1．Groups
1．1 Notations
－numbers：$N \not \approx \underset{\mathbb{Q}}{\substack{\text { rational } \\ \mathbb{R}} \mathbb{C} \mathbb{Z}_{n} \text { sot int．module } n ~}$
－matrices：For $n \in \mathbb{N}$ ，an $n \times n$ matrix over \mathbb{R} ，is an $n \times n$ array
$A=\left[a_{i j}\right]=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & \ddots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right]$ with $a_{i j} \in \mathbb{R} . \quad 1 \leq i, j \leq n$ ．
addition：$A+B=\left[a_{i j}+b_{i j}\right]$
multiplication：$\left.A B=I c_{i j}\right] \quad c_{i j}=\sum_{k=1}^{n} a_{i} b_{b j} b_{j}$
1．2 Groups
－def：Group．
Let G be a set and $*$ be an beration on $G \times G$ ，we say $G=(G, *)$ is a group if it satisfies：
1）Closure：if $a, b \in G$ ，then $a * b \in G$
2）Associativity：f $a, b, c \in G$ ．then $a *(b * c)=(a * b) * c$ ．
3）Identity：$\exists e \in G$ ．s．t．$a * e=a=e * a$ for all $a \in G$ ．
4）Inverse：$\forall a \in G . \exists b \in G$ ．sit．$a * b=e=b * a \quad b$ ：inverse of a
－def．abelian group 交换的：
G is abelian if $a * b=b * a$ for all $a, b \in G$
－prop 1．1．Let G be a group and $a \in G$
（1）The identity of G is unique．
（2）The inverse of a is unique．
proof．（1）if $e_{1} \& e_{2}$ are both identities，then $e_{1}=e_{1} * e_{2}=e_{2}$
（2）if $b_{1} \& b_{2}$ are b_{0} th inverse of a ，then $b_{1}=b_{1} * a_{*} * b_{2}=b_{2}$
ex: The set $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$ all abelion groups. where the additive identity is D and the additive inverse of an element r is $(-r)$.
For a set S, let S^{*} denote the subset of S containing all dement with multiplicative inverse. Then $\left(\mathbb{Q}^{*}, \cdot\right)\left(\mathbb{R}^{*}, \cdot\right)\left(\mathbb{C}^{*}, \cdot\right)$ are abelion groups.
ex. The set $\left(M_{n}(\mathbb{R}),+\right)$ is an abelian group. where the additive identity is (1) and the additive inverse of $M=\left[a_{i j}\right]$ is $-M=\left[-a_{i j}\right]$
The set $(\mathbb{M} \mid \mathbb{R})$, $)$ is not an abelian group since nut all matrix is invertible.
ex. Let $G \& H$ be groups. Their direct product is the set $G \times H$ with component-wise operation defined by $\left(g_{1}, h_{1}\right) *\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} * * h_{2}\right)$ $G \times H$ is a group. identity $\left(e_{G}, e_{H}\right)$ inverse: $(g, h)^{4}=\left(g^{-1}, h^{-1}\right)$ By induction: $G_{1}, G_{2}, \cdots, G_{n}$ are groups $\Rightarrow G_{1} \times G_{2} \times \cdots \times G_{n}$ is a group Notation: Given group $G, g_{1}, g_{2} \in G . \quad g_{1}^{*} g_{2}=g_{1} g_{2}$. identity by 1 . inverse of g : g^{-1} define $g^{n}=g * \cdots * g . \quad g^{-n}=\left(g^{-1}\right)^{n} \quad g^{0}=1$

- prop 1.2 Let G be a group. $g, h \in G$. we have
(1) $\left(g^{-1}\right)^{-1}=g$
(2) $(g h)^{-1}=h^{-1} g^{-1}$
(3) $g^{n} * g^{m}=g^{n+m}$ for all $n, m \in \mathbb{Z}$
(4) $\left(g^{n}\right)^{m}=g^{n m} \quad$ for all $n, m \in \mathbb{Z}$
proof. (2) $(g h)\left(h^{-1} g^{-1}\right)=g\left(h h^{-1}\right) g^{-1}=g g^{-1}=1=(g h)(h g)^{-1}$
$*(g h)^{n}=g^{n} h^{n}$
- prop 1.3 Let G be a group and $g . h \in G$. Then
(1) They satisfy left \& right cancellation more pelwisely.

$$
\begin{aligned}
& \cdot g h=g f \Rightarrow h=f \\
& \cdot h g=f g \quad \Rightarrow h=f
\end{aligned}
$$

(2) Given $a, b \in G$ ax $=b$. $y a=b$ have unique solution for $x \cdot y \in G$
proof. (1) $g h=g f$
$g^{-1} g h=g^{-1} g f$ (by lIft cancellation)

$$
h=f
$$

(2) let $x=a^{-1} b . \Rightarrow a x=a\left(a^{-1} b\right)=\left(a a^{-1}\right) b=b$.
if u is another solution, then $a=b=a x \Rightarrow u=x$ similarly, $y=b a^{-1}$ is also a unique solution.
1.3 Symmetric Groups
－def．permutatioion of 2 ．

Given a non－empty set of α ，a permutation of L is a bijection from α to L ．The set of all permutations of α is denoted by S_{L} ．
ex．Consider $\alpha=\{1,2,3\}$ which has six different permutations

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) \frac{\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)}{1}\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

indicate the bijection：每个 element

$$
\sigma:\{1,2,3\} \rightarrow\{1,2,3\} \text { with } \sigma\{1\}=1 . \quad \sigma\{2\}=3 . \quad \sigma\{3\}=2 .
$$

＊To consider the order of general S_{n} for $\sigma \in S_{n}$ ，we have n choices for $\sigma(1)$
－def．symmetric group．S_{n}
The permutation of set X form group S_{x} ．If $X=\{1,2, \ldots, n\}$ ．
We can write S_{n} instead of S_{x} ．
S_{n} is．symmetric group．set of all permutations of n elements $(=n!)$
－prop $1.4\left|S_{n}\right|=n!$ symmetric group in size （ S_{n} is a group with n ！elements）
Given $\sigma . \tau \in S_{n}$ ，we con compose them to get a third element $\sigma \tau$ ．
where $\sigma[:\{1,2, \cdots, n\} \rightarrow\{1,2, \cdots, n\} . \quad x \mapsto \sigma(\tau(x))$
Since both $\sigma \& \tau$ are bijection．So is $\sigma \tau$ ．
ex．

$$
\begin{aligned}
& \sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right) \quad \tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{array}\right) \\
& \sigma \tau(1)=\sigma(\tau(1))=\sigma(2)=4 \\
& \sigma \tau(2)=\sigma(\tau(2))=\sigma(4)=2 \\
& \sigma \tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 2 & 3 & 1
\end{array}\right) \quad \tau \sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right) \quad \Rightarrow \quad \sigma \tau \neq \tau \sigma
\end{aligned}
$$

－def．converse permutation
The identity permutation．ε is defined as $\varepsilon(a)=a \quad \forall a \in\{1, \ldots, m\}$ ．
Then for any $\sigma \in S_{n}$ ．we have $\sigma \varepsilon=\sigma=\varepsilon \sigma$
Finally．for $\sigma \in S_{n}$ ．Since it is a bijection．there exist a unique bijection $\frac{\sigma^{-1} \in S_{n}}{\Delta}$

$$
\begin{aligned}
& \sigma^{-1}(x)=y \Leftrightarrow \sigma(y)=x \\
& \sigma^{-1} \sigma=\sigma \sigma^{-1}=\varepsilon
\end{aligned}
$$

ex．the inverse $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3\end{array}\right)$ is $\sigma^{-1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 1\end{array}\right)$
－prop 1．5．1）．$\sigma . \tau \in S_{n} . \quad \sigma \tau \in S_{n}$

$$
\Rightarrow \sigma(\tau \mu)=(\sigma \tau) \mu
$$

（相当于 associativity）
3）There exist $\varepsilon \in S_{n}$ ．sit $\sigma \varepsilon=\sigma=\varepsilon \sigma$ （相当于，identity）
4）$\forall \sigma \in S_{n}$ ．$\exists \sigma^{-1} \in S_{n}$ ．s．t $\sigma^{-1} \sigma=\sigma \sigma^{-1}=\varepsilon$
S_{n} is a group．\rightarrow symmetric group of dy n
Q．Write down all the rotations and reflection of an equilateral triangle．方法：represent element in a permutation in a cycle．

10）aides are disjoint if they have no numbers σ can be composed to 4 cycles $(1372)(46)(598)(10)$
－theorem 1.6 （Cycle decomposition Theorem）
If $\sigma \in S_{n}$ with $\sigma \notin \varepsilon$ ．Then σ is a product of disjoint cycles of length at least 2 ．

每个cyde 中的数只会对应到准一的数，且在本cycle 中
The factorication is unique up to the order of factors．
＊S_{n} 中的每个 permutation 可以被视为 permutation in S_{n+1} by fixing the number $n+1$ $(1,2,3) \rightarrow(1,2,3) \quad$ equivalent to $(1,2,3,4) \rightarrow(1,2,3,4)$

1．4 Cayley Tables
－def．Cayley Table
Given $x . y \in G$ ，the product $x y$ is the entry of the table in the row comespondiy to x and the column corresponding to y ．Such a table is called Cayley Table
ep．$\left(\mathbb{Z}_{2},+\right)$

\mathbb{Z}_{2}	$[0]$	$[1]$
$[0]$	$[0]$	$[1]$
$[1]$	$[1]$	$[0]$

$\left(\mathbb{Z}^{*}, *\right)$

\mathbb{Z}^{*}	1	-1
1	1	-1
-1	-1	1

如果cayley table symmetric则里面是 abelion
－Cancellation Rule
the entry in each row／column ave all distinct．
－def．isomorphic 同构 \cong
label Coyly table 中im index．发现两个table 构或相同（自己荋的）

－def．Cyclic Group．C_{n}（由pover in 形式组成）
The cyclic group of order n is $C_{n}=\left\{1, a, a^{2}, \ldots, a^{n-1}\right\}$ ．with $a^{n}=1$ and $a, a^{2}, \cdots, a^{n-1}$ distinct．

军作 $C_{n}=\left\langle a: a^{n}=1\right\rangle \rightarrow$ generator of C_{n}

C_{n}	1	a	\cdots	a^{n-2}	a^{n-1}
1	1	a	\cdots	a^{n-2}	a^{n-1}
a	a	a^{2}	\cdots	a^{n-1}	1
a^{2}	a^{2}	a^{3}	\cdots	1	a
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
a^{n-2}	a^{n-2}	a^{n-1}	\cdots	a^{n-4}	a^{n-3}
a^{n-1}	a^{n-1}	1	\cdots	a^{n-3}	a^{n-2}

\leftarrow Coley table of Cn

- prop 1.14. Let G be a isomorphism group. Then.

$$
\text { 1) }|G|=1 \Rightarrow G \cong\{1\}
$$

$$
\text { 2) }|G|=2 \Rightarrow G \cong C_{2}
$$

$$
\text { 3) }|G|=3 \Rightarrow G \cong C_{3}
$$

$$
\text { 4) }|G|=4 \Rightarrow G \cong C_{4} \text { or } G \cong K_{4} \cong C_{2} \times C_{2}
$$

proof. 1) $|G|=1 \Rightarrow G=\{1\}$
2) $|G|=2 \Rightarrow G=\{1, g\} \cdot(g \neq 1)$.

Copley table:

G	1	g
	1	g
g	g	1

3) $|G|=3 \Rightarrow G=\{1, g, h\} \quad(g \neq 1, h \neq 1, g \neq h)$

Conley table :
C_{3}

G	1	g	h
	1	g	h
g	g	h	1
h	h	1	g

4) $|G|=4 \Rightarrow G=\{1, f, g, h\}(1, f, g, h$ not equal to each other)

Conley table of G :

c_{4}	1	f	g	h
1	1	f_{2}	g	h
f	f	f_{2}	$g f_{2}$	$h f$
g	g	f_{2}	g	$h g_{2}$
h	h	$f h$	$g h$	h^{2}

By Canallation Pule, $g f \neq g \neq f \quad \therefore g f=1$ or $g f=h$ case 1. $g f=1$

c_{4}	1	f	g	h
1	1	f	g	h
f	f	h	1	g
g	g	1	h	f
h	h	g	f	1

c_{4}	1	f	g	h
1	1	f	g	h
f	f	g	h	1
g	g	h	1	f
h	h	1	f	g

Prove $K_{4} \cong C_{2} \times C_{2}$:

2．Subgroups
2．1 Subgroup
－def．subgroup
Let G be a group and $H \subseteq G$ be a subset of G ．
If H itself is a group，then we say H is a subgroup of G ．
－Subgroup Test：
Since G is a group，for $h_{1} \cdot h_{2} \cdot h_{3} \in H$ then $h_{1}\left(h_{2} h_{3}\right)=\left(h_{1} h_{2}\right) h_{3}$ ．
H is a subgroup of $G \Leftrightarrow$ 同时满足 $\bigcirc h_{1} \cdot h_{2} \in H \Rightarrow h_{1} h_{2} \in H$
（2）$l_{G} \in H$
（3）$h \in H \Rightarrow h^{-1} \in H$
ep．Let G be a group．Then $\{1\}, G$ are subgroups of G
ep．We have a chain of groups $(\mathbb{Z},+) \subseteq(\mathbb{Q},+) \subseteq(\mathbb{R},+) \leq(\mathbb{C},+)$

$$
S L_{n}=\left(S L_{n}(\mathbb{R}), \cdot\right)=\left\{M \in M_{n}(\mathbb{R}): \operatorname{det}(M)=1\right\} \leqslant G L_{n}(\mathbb{R})
$$

subgroup test： $0 I \in S L_{n}(\mathbb{R})$
（－）Let $A \cdot B \in S L_{n}(\mathbb{R}) \Rightarrow \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=1$
（3）Let $A \in \delta \alpha_{n}(\mathbb{R}) \Rightarrow \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}=1$
－def．center．$(Z(G))$
Given a group G ，we define centre of G to be $Z(G)=\{z \in G: z g=g z \forall g \in G\}$ $Z(G)=G \Leftrightarrow G$ is abelian centre 里的 element 能组成 G in $-Y$ suhyp
－prop 2．1．Let $H \& K$ be subgroups of G ．
Then $H \cap K=\{g \in G: g \in H$ and $g \in K\}$ is also a subgroup of G

- prop 2.2. Finite subgroup test

If H is a finite non-empty subset of group G, then H is a subgroup of $G \Leftrightarrow H$ is closed under its operation proof: (\Rightarrow) obvious
\Leftrightarrow For $H \neq \varnothing$, let $h \in H$.
(1) $\because H$ is closed under its opertion
$\therefore h, h^{2}, h^{3}, \cdots$ are all in H
(2) $\because H$ is finite
\therefore elements are not distinct. $h^{n}=h^{n+m}$
By cancellation $\quad h^{m}=1 \quad \therefore 1 \in H$.
(3) $\quad 1=h^{m-1} h \Rightarrow h^{-1}=h^{m-1} \quad h^{-1} \in H$.

By subgroup test, H is subgroup of G.
-prop 2.3. $D \mid \in Z(G)$
(2)

$$
\begin{aligned}
& y, z \in Z(G) \quad y z \in Z(G) \\
& \forall g \in G, \quad(y z) g=y(z g)=y(g z)=(g y) z=g(y z)
\end{aligned}
$$

(3) $z \in z(G) \quad z^{-1} \in G \quad g \in G . \quad z^{-1} g=\left(g^{-1} z\right)^{-1}=\left(z g^{-1}\right)^{-1}=g z^{-1}$
ex. consider $(\mathbb{Z},+)$. Since $k=\underbrace{1+\cdots+1}_{k \uparrow \mid}$. 1 is a generator of $(\mathbb{Z},+)$. similary -1 is a generator.
But if $k \neq \pm 1$. I cannot be obtained via scalar multiplication.
Let G be a group, $g \in G$ suppose $\exists b \in \mathbb{Z}$. $k \neq 0$. set $g^{k}=1$. then $g^{n k}=\left(g^{k}\right)^{n}=1 \quad \forall n \in \mathbb{Z}$. Assume $k \geqslant 0$
By the well ordering principle, there exists a smallest possible integer n
s.t. $g^{n}=1$ s..t. $g^{n}=1$

2．2 Alternating Groups
－def．transposition
A transposition $G \in S_{n}$ is a cycle（ie $\sigma=(a \quad b)$ with $a, b \in\{1, \cdots n\}, a \neq b$ ）
ep．Consider permutation $\left(\begin{array}{llll}1 & 2 & 4 & 5\end{array}\right) \in S_{5}$
Also，the composition $(12)(24)\left(\begin{array}{ll}4 & 5\end{array}\right)$ can be computed as：
$\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 5 \\ 1 & 4 & 3 & 5 & 4 \\ 2 & 4 & 3 & 5 & 1\end{array}\right) \quad$ Thus $\left(\begin{array}{llll}1 & 2 & 4 & 5\end{array}\right)=\left(\begin{array}{lll}1 & 2 & 0\end{array}\right)\left(\begin{array}{lll}0 & 4 & 4\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)$
Also，the factorization into transpositions are not unique．
－The 2．3 Parity Theorem
$(1245)=(124)(45)$
If a permutation σ has 2 factorizations．$\sigma=\gamma_{1} \ldots \gamma_{r}=\mu_{1} \ldots \mu_{s}$ where each $\gamma_{i} \& \mu_{j}$ is a transposition then $\begin{aligned}r \equiv s \operatorname{lnod} 2) \\ 3 \equiv 1 \text {（mod 2）}\end{aligned}$
－def．permutation
A permutation σ is even（or odd）if it can be written as product of an even（or odd）number of transposition．
ep．上面 example ψ ，permutation σ is odd（䢁成 $3 \uparrow$ subgp 相乘） $(12)(34)(56)$ 这个peruntation 生有 3$\}$ transposition
＊by the o 2．3．a permutation is either even or odd．
\＃transposition＝even
－The 2．4 For $n \geqslant 2$ ，let A_{n} denote the set of all even permutations in S_{n} ．
1）$e \in A_{n} \xrightarrow{ }$ identity
2）$a, b \in A_{n} \Rightarrow a b \in A_{n} \quad a^{-1} \in A_{n}$
3）$\left|A_{n}\right|=\frac{1}{2} n$ ！
$\stackrel{\rightharpoonup}{ } A_{n}$ is a subgroup of S_{n} ． called＂Aternatiy group of degree n＂
A_{n} is a subgp of S_{n} ．
ep．1）$\left.\left(\begin{array}{ll}1 & 2\end{array}\right) \quad 2\right) a=\left(\begin{array}{lll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right) \quad a^{-1}=\left(\begin{array}{ll}3 & 4\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$

2．3 Order of element
－Notation If G is a group and $g \in G$ ．denote $\langle g\rangle=\left\{g^{k}: k \in \mathbb{Z}\right\}$ ．

$$
x=g^{m} \cdot y=g^{n} \in\langle g\rangle \quad(m, n \in \mathbb{Z}) \Rightarrow x y=g^{m+n} \in\langle g\rangle
$$

－prop 2.5 If G is a group．$g \in G$ ．then $\langle g\rangle$ is a subgroup of G
－def．cyclic group \＆generator．
Let G be a group and $g \in G,\langle g\rangle$ is the gaelic subgroup of G ． generated by g ．
If $G=\langle g\rangle$ ，for some $g \in G$ ，then G is a cyclic group and ga generator of G
ep．Consider $(\mathbb{Z},+)$ Note that $\forall k \in \mathbb{Z}$ ．we can write $k=k \cdot 1$ Thus $(\mathbb{Z},+)=\langle 1\rangle \quad$ Similarly $(\mathbb{Z},+)=\langle-1\rangle \quad 1-k=k \cdot(-1))$ observe that $\forall n \in \mathcal{Z}$ with $n= \pm 1$ ，there exist no $k \in \mathbb{Z}$ sit $k \cdot n=1$ Thus，± 1 are only generators of $(\mathbb{Z},+)$
－def．order of g o lg）
Let G be a group $g \in G$ ．
If n is the smallest positive integer st $g^{n}=1$ ，then order of g is $n \quad o(g)=n$ If no such n exist，then g has infinite order
－prop 2．6 Let G be a gp．$\quad O(g)=n \in \mathbb{N} \quad k \in \mathbb{Z}$
1）$g^{k}=1 \Leftrightarrow n \mid k$
2）$g^{k}=g^{m} \Leftrightarrow k \equiv \operatorname{m}(\bmod n)$
3）$\langle g\rangle=\left\{1, g, g^{2}, \cdots, g^{n-1}\right\}$
（cements all distinct）
proof: 1) (\Leftrightarrow Let $n=q k, q \in \mathbb{Z}$.

$$
g^{n}=g^{q k}=\left(g^{k}\right)^{q}=1^{q}=1
$$

(\Rightarrow) Let $n=q k+r . \quad 0 \leqslant r<k$

$$
g^{n}=g^{g k+r}=g^{r}=1
$$

$\because k$ is smallest pos int $g^{k}=1 \quad n=q k \quad k / n$
$\therefore r$ can only be 0
2) $g^{k-m}=1$ (by cancellation law)

$$
\begin{aligned}
& \because n \mid k-m(\text { by }(1)) \\
& \therefore k \equiv m(\bmod n)
\end{aligned}
$$

3) prove existence:

$$
\text { for } k \geqslant n . \quad k=q n+r . \quad(0 \leqslant r \leqslant n-1) \quad g^{k}=g^{r} \in\langle g\rangle
$$

prove unique:

$$
\begin{aligned}
& g^{a}=g^{b} \quad 0 \leq a, b \leq n-1 \\
& g^{a-b}=0 \quad \Leftrightarrow \quad a-b=0 \\
& \because a-b<r \quad \therefore a=b
\end{aligned}
$$

- prop 2.7. Let G be a $g p . g \in G . \quad o(g)=\infty . \quad k \in \mathbb{Z}$.

1) $g^{k}=1 \Leftrightarrow k=0$
2) $g^{k}=g^{m} \Leftrightarrow k=m$
3) $\langle g\rangle=\left\{1, g, g^{2}, \cdots\right\} \quad$ (elements all distinct)
proof: 1) $\left(\Leftrightarrow g^{0}=1\right.$
$\left(\Rightarrow\right.$ if $g^{k}=1$. Assume $k \geqslant 0$
implies $0(g)$ is finite contradiction

$$
\begin{aligned}
& \Rightarrow g^{k}=g^{m} \quad g^{k-m}=1 \\
& \quad \text { (by (1)) }
\end{aligned}
$$

- prop 2.8 Let G be a $g p . g \in G . \quad \circ(g)=n \in \mathbb{N}$.

If $d \in \mathbb{N}$, then $o\left(g^{d}\right)=\frac{n}{g(d(n, d)}$

$$
d \left\lvert\, n \Rightarrow 0\left(g^{d}\right)=\frac{n}{d}\right.
$$

prof: Let $n_{1}=\frac{n}{\operatorname{gcc}(n, d)} \quad d_{1}=\frac{d}{\operatorname{gcd}(n, d)} \quad \operatorname{gcd}\left(n_{1}, d_{1}\right)=1$

$$
\left.\left(g^{d}\right)^{n_{1}}=\left(g^{d}\right)^{\frac{g^{n}\left(n_{0} d\right)}{}}=\left(g^{n}\right)^{\frac{d}{g\left(n\left(n_{n}\right)\right.}}=1 \quad 0\left(g^{d}\right) \right\rvert\, n
$$

\downarrow Show n_{1} is the smallest integer.

$$
\begin{gathered}
\left(g^{d}\right)^{r}=1 \quad(r \in \mathbb{N}) . \\
\because 0(g)=n . \quad n \mid d_{r}(\text { prop } 2,6) \\
\therefore d r=n q \quad(q \in \mathbb{Z}) \\
\frac{d}{\operatorname{god}(n, d)}=\frac{n}{\operatorname{god}(n, d)} q \quad d_{1} r=n, q \\
\because\left(d_{1}, n_{1}\right)=1 \quad n_{1} \mid r \\
\therefore\left(g^{d}\right)^{n_{1}}=1 \\
\text { ep. } 0(g)=10 . \quad d=2 . \quad 0\left(g^{2}\right)=\frac{10}{\operatorname{gcd}(2,10)}=5 \\
e=g^{10} \quad\left(g^{2}\right)^{5}=g^{10}
\end{gathered}
$$

2．4 Cycle groups
－def．Cyclic group
If $G=\langle g\rangle$ for some $g \in G$ ．Then G is a cyclic group．
－prop 2.9 Every cyclic group is abelian．
proof：For $a, b \in G$ ，we have $a=g^{m}$ and $b=g^{n}$ for some $m, n \in \mathbb{Z}$ ．

$$
a b=g^{m} \cdot g^{n}=g^{m+n}=g^{n+m}=g^{n} \cdot g^{m}=b \cdot a
$$

＊The converse of poop 2.9 is not the
op．The Klein group $K_{4} \cong C_{2} \times C_{2}$ is abdian．Lat K_{4} not cyclic．
－pap 2．10 Every subgroup of a ygchic group is cyclic
proof．Let $G=\langle g\rangle$ be cyclic and H be a subgroup of G ．
．If $H=\{1\}$ ．then $H=\langle 1\rangle$ is cyclic．
－If $H \neq\{1\}$ ．then $\exists g^{k} \in H$ ．with $k \in \mathbb{Z}, a k \neq 0$ ．

$$
\because H \text { is group } \quad \therefore g^{k} \in H \text {. }
$$

Assume $b \in \mathbb{N}$ ．Let m be the smallest pos int．sit．$g^{m} \in H$

$$
\therefore g^{m} \in H \quad \therefore\left\langle g^{m}\right\rangle \leq H .
$$

对于每 $\} h * H \leq G=\langle g\rangle$ 。可军作 $h=g k \quad(k \in \mathbb{Z})$
$\because k=m q+r \quad(0 \leq r<m) \quad$ by derision algorithm

$$
\therefore g^{k}=g^{k-m q}=\left(g^{k}\right)\left(g^{m}\right)^{q} \in H .
$$

$\because 0 \leq r<m$ ．＾$r=0$
$\therefore m \| k \quad g^{k} \in\left\langle g^{m}\right\rangle \Rightarrow H=\left\langle g^{m}\right\rangle$.
－prop 2．11．Let $G=\langle g\rangle$ be a cyclic group with $o(g)=n \in \mathbb{N}$ ．
Then $G=\left\langle g^{k}\right\rangle \Leftrightarrow \operatorname{gcd}(k, n)=1$ ．
proof：by pop $2.8 \circ(g k)=\frac{n}{\operatorname{god}(n, k)}=n$ ．

- the 2.12 Fundanurtal theorem of finite asdic group.

Let $G=\langle g\rangle$ be a cyclic group of order $n \in \mathbb{N}$.

1) H is a subgroup $\Rightarrow H=\left\langle g^{d}\right\rangle$ for some $d \mid n$. $\langle | H \|_{n}$
2) Conversely. $k \mid n \Rightarrow\left\langle g^{k}\right\rangle$ is the unique surbjoup of G of order k.
proof. (1) by prop 2.6. H is cyclic. $H=\left\langle g^{m}\right\rangle$ for some $m \in \mathbb{N}$.
Let $d=\operatorname{gcd}(m, n)$
Claim $H=\left\langle g^{m}\right\rangle \leqslant\left\langle g^{d}\right\rangle$.

$$
\begin{gathered}
L \because d \mid m \quad \therefore m=k d \quad \quad(k \in \mathbb{Z}\rangle \\
\therefore g^{m}=g^{k d}=\left(g^{d}\right)^{k}=\left\langle g^{d}\right\rangle \\
\therefore H=\left\langle g^{m}\right\rangle \leq\left\langle g^{d}\right\rangle .
\end{gathered}
$$

Claim $H=\left\langle g^{d}\right\rangle$

$$
\begin{aligned}
& \because d=\operatorname{gcd}(m, n) \quad \therefore \exists x \cdot y \in \mathbb{Z} \cdot \text { set } d=m x+n y . \\
& \therefore g^{d}=g^{m x+n y}=\left(g^{m}\right)^{x}\left(g^{n}\right)^{y}=\left(g^{m}\right)^{x} \cdot \frac{1}{}_{y}^{\text {colic }} \quad \operatorname{gp} \text { of omber } 1 \\
& \left.\therefore\left\langle g^{m}\right\rangle\right\rangle \varepsilon\left\langle g^{m}\right\rangle \quad \therefore H=\left\langle g^{d\rangle} \quad G=\langle g\rangle=\left\langle g^{k}\right\rangle \quad \operatorname{gcd}(k, n)=1\right.
\end{aligned}
$$

12) By prop 2.8, the cydic subgroup $\left\langle g^{\frac{n}{k}}\right\rangle$ is of $\operatorname{order} \frac{n}{\operatorname{gcd}\left(n, \frac{n}{k}\right)}=k$ To show uniqueness, let k be a subgroup of G which is of order k with $k \mid n$.
$B y$ (1). Let $k=\left\langle g^{d}\right\rangle$ with $d \mid n$

$$
\begin{aligned}
& \text { By prop 2.6.\& 2.8. } k=1 k \left\lvert\,=0(g d)=\frac{n}{g(d \ln , d)}=\frac{n}{d} .\right. \\
& \therefore d=\frac{n}{k} \quad k=\left\langle g^{\frac{n}{k}}\right\rangle
\end{aligned}
$$

2．5 Non－cyclic group
－def．subgroup of G generated by x ．
Let X be a nonempty subset of a group G ，and let

$$
\langle X\rangle=\left\{x_{1}^{k_{1}}, x_{2}^{k_{2}}, \cdots, x_{m}^{k_{m}}: x_{i} \in X, k_{i} \in \mathbb{Z}, m \geqslant 1\right\} .
$$

denote the set of all products of powers of（non necessarily distinct）element of x ． $\because 1=x_{1} \in\langle X\rangle$ and $\left(x_{1}^{k_{1}}, \ldots, x_{m}^{k_{m}-1}=x_{m}^{-k_{m}} \quad x_{1}^{-k_{1}} \in\langle X\rangle\right.$
$\therefore\langle X\rangle$ is a subgroup of G containing X ．
ex．The Klein 4 group $K_{4}=\{1, a, b, c\} \quad a^{2}=b^{2}=c^{2}=1 . \quad a b=c$ ．

$$
\Rightarrow=\left\langle a, b: a^{2}=1=b^{2} \quad a b=b a\right\rangle
$$

ex．The symmetric op of done 3 ．

$$
\begin{array}{ll}
S_{3}=\left\{\varepsilon, \sigma, \sigma^{2}, \tau, \tau \sigma, \tau \sigma^{2}\right\} \quad \sigma^{2}=\varepsilon=\tau^{2} \quad \sigma \tau=\tau \sigma^{2} \quad\left(\text { can } t=\left\lvert\, \alpha \quad \sigma=\left(\begin{array}{ll}
1 & 23
\end{array}\right)\right.\right. \\
\therefore S_{3}=\left\langle\sigma, \tau: \sigma^{3}=\varepsilon=\tau^{2} \quad \sigma I=I \sigma^{2}\right\rangle & \tau=(12)
\end{array}
$$

σ, τ 于被 $\sigma, \tau \sigma$ 或 $\sigma, \tau \sigma^{2} \cdots$ 代替
－def．dihedral group．Dr
For $n \geqslant 2$ ．the dihedral group of order $2 n$ is defined by
$D_{2 n}=\left\{1, a, \cdots, a^{n-1}, b, b a, \cdots, b a^{n-1}\right\}$ where $a^{n}=1=b^{2}$ ．$a b a=b$ ．

$$
=\left\langle a, b: a^{n}=1=b^{2} \quad a b a=b\right\rangle
$$

When $n=2$ or $n=3, \quad D_{4} \cong K_{4} \quad D_{6} \cong S_{3}$
3. Normal Subgroup
3.1 Homomorphisms and Isomorphisms

- def. homomorphism

Let $G \& H$ be gps. A mapping $\alpha: G \rightarrow H$ is homonophism if:

$$
\alpha\left(\alpha *_{G} b\right)=\alpha(a) *_{H} \alpha(b) \text { for all } a, b \in G \text {. }
$$

To simplify notation. 写作 $\alpha(a b)=\alpha(a) \alpha(b) \quad \forall a b \in G$
ex. consider the determinant map $\operatorname{det}:\left(G L_{n}(\mathbb{R}), \cdot\right) \rightarrow \mathbb{R}^{*} \quad A \mapsto \operatorname{det}(A)$. $\because \operatorname{det}(A B)=\operatorname{dot}(A) \operatorname{det}(B) \quad \therefore$ mapping is HM .

- prop 3.1.

Let $\alpha: G \rightarrow H$ be a gp $H M$.
Then 1) $\alpha\left(e_{G}\right)=e_{H}$
2) $\alpha\left(g^{-1}\right)=\alpha(g)^{-1} \quad \forall g \in G$
3) $\alpha\left(g^{k}\right)=\alpha(g)^{k} \quad \forall g \in G \quad k \in \mathbb{Z}$

- def. isomorphism

Let $G \& H$ be gps. Consider $\alpha: G \rightarrow H$.
If α is $H M . \alpha$ is $\underset{O \leftrightarrow 0}{\text { bijective. Then } \alpha}$ is an isomorphism.
© onto Θ one-to-one $G \& H$ are isomorphic $G \cong H$
-pro p3.2.

1) The identity map $G \rightarrow G$ is an IM.
2) $\sigma: G \rightarrow H$ is an $I M$. \Rightarrow the inverse map $\sigma^{-1}: H \rightarrow G$ is iso $I M$
3) $\sigma: G \rightarrow H: \tau: H \rightarrow K$ are $I M$, the composite map $\tau \sigma: G \rightarrow K$ is also $I M$
$\Rightarrow \cong$ is an equivalent relation
ex. Let $\mathbb{R}^{+}=\{r \in \mathbb{R} . \quad r>0\}$.
Claim $(\mathbb{R},+)$ is isomorphic to $\left(\mathbb{R}^{+}, \cdot\right)$
Define $\sigma=(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{+}, \cdot\right)$ by $\sigma(r)=e^{r}$ where e is the exponential $f^{\prime} n$. * the exponentiod map $\mathbb{R} \rightarrow \mathbb{R}^{+}$is bijution.

Also, $r, s \in \mathbb{R}, \quad \sigma(r+s)=e^{r+s}=e^{r} \cdot e^{s}=\sigma(r) \sigma(s)$
Thus, σ is $\operatorname{IM} . \quad(\mathbb{R},+) \cong\left(\mathbb{R}^{+}, \cdot\right)$
ex. Claim $(\mathbb{Q},+)$ is not isomorphic to $\left(\mathbb{Q}^{*},.\right)$
Suppose that $t:(\mathbb{Q},+) \rightarrow\left(\mathbb{Q}^{*}, \cdot\right)$ is an $I M$.
Then τ is onto. $\Rightarrow \exists q \in \mathbb{Q}$. st $\tau(q)=2$. 写作 $\tau\left(\frac{q}{2}\right)=a \in \mathbb{Q}$
$\because \tau$ is a $H M$.

$$
\therefore a^{2}=\tau\left(\frac{q}{2}\right) \tau\left(\frac{q}{2}\right)=\tau\left(\frac{q}{2}+\frac{q}{2}\right)=\tau(q)=2
$$

contradicts the fact that $a \in \mathbb{Q}$
\therefore such r doesn't exist $(\mathbb{Q},+) \not \equiv\left(\mathbb{Q}^{*}, \cdot\right)$
3.2 Cosets \& Lagrange's Theorem

- def. Left / right coset

Let H be a subgroup G. $a \in G$,
the right coset of H generated by a : $H_{a}=\left\{h_{a}: h \in H\right\}$
the left coset of H generated by $a: a H=\{a h: h \in H\}$
$H I=1=1 H \quad a \in H a \& \quad a \in a H \quad$ since $1 \in H$

* aH \& H_{a} are not sulogroups of G.
* $\mathrm{Ha}_{\mathrm{a}} \neq a H$ (若 G abelian, 则 $H_{a}=a H$)

Group: G Subgroup: $N \underline{\hat{c}} G$
Use N to make cosets: $N, g_{1} N, g_{2} N, \cdots$

- Do cosets always form a group? No.

For cosets act like a gp:

ep. $D_{6}=D_{23}=\left\{I, a, a^{2}, b, a b, a^{2} b\right\} \quad a^{3}=b^{2}=I . \quad b a=a^{2} b$

$\boldsymbol{*}$	\boldsymbol{I}	\boldsymbol{a}	$\boldsymbol{a}^{\mathbf{2}}$	\boldsymbol{b}	$\boldsymbol{a} \boldsymbol{b}$	$\boldsymbol{a}^{2} \boldsymbol{b}$
\boldsymbol{I}	I	a	a^{2}	b	$a b$	$a^{2} b$
\boldsymbol{a}	a	a^{2}	I	$a b$	$a^{2} b$	b
$\boldsymbol{a}^{\mathbf{2}}$	a^{2}	I	a	$a^{2} b$	b	$a b$
\boldsymbol{b}	b	$a^{2} b$	$a b$	I	a^{2}	a
$\boldsymbol{a} \boldsymbol{b}$	$a b$	b	$a^{2} b$	a	I	a^{2}
$\boldsymbol{a}^{2} \boldsymbol{b}$	$a^{2} b$	$a b$	b	a^{2}	a	I

$$
H=\{I, b\} \leq D_{6}
$$

left cosets of H : left cosets of H :

$$
\begin{array}{l|l}
I \cdot H=\{I, b\} & H \cdot I=\{I, b\} \\
a \cdot H=\{a, a b\} & H \cdot a=\left\{a, a^{2} b\right\} \\
a^{2} \cdot H=\left\{a^{2}, a^{2} b\right\} & H \cdot a^{2}=\left\{a^{2}, a b\right\}
\end{array}
$$

- prop 3.3

Let H be a arbgp of G. $a \cdot b \in G$
1)

$$
\text { 1) } \begin{aligned}
H a=H b & \Leftrightarrow a b^{-1} \in H \\
H a=H & \Leftrightarrow a \in H \quad \text { (此时 } b=1) \\
\text { 2) } a \in H b & \Rightarrow H a=H b
\end{aligned}
$$

3) either $\mathrm{Ha}=\mathrm{Hb}$ or $\mathrm{Ha} \cap \mathrm{Hb}=\varnothing$

Thus the distinct right coset of H forms a partition of G.
proof: (") \Leftrightarrow) If $H a=H b$. then $a=1 \cdot a \in H a=H b$
$\therefore a=h b$ for some $h \in H . \quad a b^{-1}=h \in H$
$\Leftrightarrow \quad \because a b^{-1} \in H$

$$
\begin{aligned}
& \therefore \forall h \in H \quad h a=h\left(a b^{-1}\right) b \in H b \\
& \therefore H a \subseteq H b
\end{aligned}
$$

$\because a b^{-1} \in H \quad H$ is asubgp

$$
\begin{aligned}
& \therefore\left(a b^{-1}\right)^{-1}=b a^{-1} \\
& \therefore \forall h \in H, \quad h b=h\left(b a^{-1}\right) a \in H a \\
& \therefore H b \subseteq H a
\end{aligned}
$$

So $\mathrm{Ha}_{\mathrm{a}}=\mathrm{Hb}$
(2) If $a \in H b$, then $a b^{-1} \in H$.

$$
\text { by (1), } H a=H b
$$

(3) case 1:

$$
\begin{aligned}
& H a \cap H b=\varnothing \quad \text { obvious } \\
& H a \cap H b \neq \phi \\
& \Rightarrow \exists x \in H a \cap H b \\
& \because x \in H a \quad \therefore H a=H x \quad \text { (by (2)) } \\
& \because x \in H b \quad \therefore H b=H x \quad \text { (by (2)) } \\
& \text { So } H a=H x=H b
\end{aligned}
$$

$$
\text { cases: } \mathrm{Ha} \cap H b \neq \phi
$$

－dy f index
by prop 3．3．G can be written as a disjoint union of right closets of H ． index $[G: H]=\#$ distinct right／left coset of H in G ．
－Lagrange Theorem．
Let H be a subgroup of a finite group $G \Rightarrow|H|\left||G| \cdot[G: H]=\frac{|G|}{|H|}\right.$ proof：G split into non－overlapping left cosets：$H, g_{1} H, g_{2} H, \ldots$

$$
g h_{1}=g h_{2} \Rightarrow g^{-1}\left(g h_{1}\right)=g^{-1}\left(g h_{2}\right)
$$

$\Rightarrow h_{1}=h_{2}$（所以足non－overlap in）prop 3.3 each coset has size $|H|=d$

\bullet	g_{1}	g_{2}
ϱ_{3}	g_{4}	g_{5}
$\circ \ldots$	\circ	\bullet
\circ	\circ	g_{n}

Let $k=[G i H] \quad k$ ：\＃coset．

$$
\therefore d \cdot k=n \Rightarrow d|n \Rightarrow| H| | G \mid
$$

proof summary：1．Pick a subgroup of $G: H$ ．
2．Cover G with cosets
3．Covets do not over lap
ex．$|G|=323=17 \times 19$ ．
divisors of $323: 1.17 .19 .323$
possible sungp orders： $1,17.19 .323$
standard surge：$G(|G|=323) \quad\{e\} \quad(|\{e\}|=1)$
other surges：order $=17$ or 19 ＊但不久一定存在
ex．$\left|A_{4}\right|=12$ ．
divisors of $12: 1,2,3,4,6,12$
$\begin{aligned} \text { \＃subgps：\＃subgp with order } 1=1 & \text { \＃order } 2=3 \\ \text { \＃order } 4 & =1\end{aligned} \begin{aligned} \text { \＃order } b & =0\end{aligned}$
\＃order $3=4$
\＃order $6=0$ \＃order $12=1$

- Cor 3.5

1) G is a finite group. $g \in G \Rightarrow 0(g)||G|$
2) G is a finite $g p$ with $|G|=n \Rightarrow \forall g \in G . g^{n}=1$.
ex. For $n \in \mathbb{N}$. with $n \geqslant 2$. let \mathbb{Z}_{n}^{+}be the set of (multiplicative) invertible cements in \mathbb{Z}_{n}.
Let the Euler's ϕ-function $\phi(n)$. denote the order of $\mathbb{Z}_{n}{ }^{*}$. ie. $\phi(n)=\#\{[k] \cdot k \in\{0,1,2, \cdots, n-1\}, \operatorname{gcd}(k, n)=1\}$.
as a direct consequence of $\operatorname{cor} 3.5$. We suppose that if $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, n)=1$, then $a^{p(n)} \equiv 1(\bmod n) . \leftarrow$ Euler's Theorem. If $n=p$. (pine), then Euler's theorem implies Fermat's little theorem. which states that $a^{p-1} \equiv 1(\bmod p)$
By constructing Cayley's table we show that $|G|=2 \Rightarrow G \cong C_{2}$ $|G|=3 \Rightarrow G \cong C_{3}$.

- Cor 3.6
G is a group with $|G|=p$. (paine) $\Rightarrow G \cong C_{p}$. (cyclic gp order p) proof: Lot $g \in G$ with $g \neq 1$ by Cor 3.5. $\quad(g)=p$. $\because g \neq 1$. $p \in$ prime. $\therefore O(g)=p$.
by prop 2.6. $|\langle g\rangle|=0(g)=p$. So. $G=\langle g\rangle \cong C_{p}$
- Cor 3.7

Let $H \& K$ be finite subgroups of G.
$\operatorname{ged}(|H|,|K|)=1 \Rightarrow H \cap K=\{1\}$
proof: By prop 2.1. $H \cap K$ is a subgp of $H \& K$.
By lagrange theorem. $|H \cap K||H| \quad|H \cap K|||K|$.

$$
\begin{aligned}
& \therefore|H \cap K| \mid \operatorname{ged}(|H|,|K|) \\
& \text { ie }|H \cap K| \mid 1 \Rightarrow H \cap K=\{1\} .
\end{aligned}
$$

3.3 Normed Subgroup

If H is a sublogroup of a group $G . g \in G$. then $g H$ \& $H g$ are cot always the same.

- def normal \checkmark

Let H be a subgroup of G.
If $g H=H g \quad \forall g \not G G$, then H is normal in $G . H \triangleleft G$
ex. $\{1\} \triangleleft G . G \triangleleft G$
ex. The center $Z(G)$ of G.
$z(G)=\{z \in G: z g=g z$ for all $g \in G\}$ is an abelian subgroup of G.
By definition. $z(G) \triangleleft G$.
\rightarrow Every sumbonup of $Z(G)$ is normal in G.
ex.
\mathbb{Z}
"Integers mod 5"

$$
\left.\begin{array}{l}
r=0:\{\ldots-15,-10,-5,0,5,10,15 \ldots\} \quad 5 \mathbb{Z} \quad \leftarrow \text { normal subgp } \\
r=1:\{\ldots-14,-9,-4,1,6,11,16 \ldots\} 1+5 \mathbb{Z} \\
r=2:\{\ldots-13,-8,-3,2,7,12,17 \ldots\} 2+5 \mathbb{Z} \\
r=3:\{\ldots-12,-7,-2,3,8,13,18 \ldots\} \\
r=4+5 \mathbb{Z} \\
r=4: \ldots-11,-6,-1,4,9,14,19 \ldots\} \\
r+5 \mathbb{Z}
\end{array}\right)
$$

congruence cases $\mathbb{Z} \bmod 5=\{\overline{0}, T, \overline{2}, \overline{3}, \mathbb{4}\}$
Quotient group $\mathbb{Z} / 5 \mathbb{Z}$: group of corsets.
adding corsets: $(1+5 \mathbb{Z})+(3+5 \mathbb{Z})=4+5 \mathbb{Z}$

$$
\begin{aligned}
(1+5 \mathbb{Z}) & =\{\cdots,-9,-4,1,6,11, \cdots\} \\
+(3+5 \mathbb{Z}) & =\{\cdots,-12,-7,-2,3,8, \cdots\} \\
\hline(4+5 \mathbb{Z}) & =\{\cdots,-11,-6,-1,4,9, \cdots\}
\end{aligned}
$$

－Normality Test．
Let H be a subgroup of G ．The following are apriotlent：
1）$H \triangleleft G$
＊2） $\mathrm{gH}^{-1} \leq H \quad \forall g \in G \rightarrow$ 一般用这个改明（任意 $h \in H, g h g^{-1} \in H$ ）
3） $\mathrm{gHg}^{-1}=H \quad \forall g \in G$
prof：1）$\Rightarrow 2$ ，Let $x \in \mathrm{gHg}^{-1}, x=g h g^{-1}$ ．for some $h \in H$ ．

$$
\begin{aligned}
& \text { By 1), } g h \in g H=H g . \\
& \therefore g h=h, g \text { for sine } h_{1} \in H \\
& \Rightarrow x=g h g^{-1}=h, g g^{-1}=h_{1} \in H . \\
& g H g^{-1} \in H
\end{aligned}
$$

2）$\Rightarrow 3$ ）If $g \in G$ ，then by 2）， $\mathrm{gHg}^{+} \subseteq H$ ．将 g^{-1} 替校 g 。待 $g^{-1} H g \leq H . \quad g\left(g^{-1} H g\right) g^{-1}=H$

$$
\begin{aligned}
& \Rightarrow H \leq g H g^{-1} \quad \therefore g^{-1} H g=H . \\
& \text { 3) } \Rightarrow 17 \quad g^{-1}=H \Rightarrow g H=H g .
\end{aligned}
$$

for $A \in G \quad B \in H \quad \operatorname{det}\left(A B A^{-1}\right)=\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}\left(A^{-1}\right)$

$$
\begin{aligned}
& =\operatorname{det}(A) \cdot 1 \cdot \frac{1}{\operatorname{det}(A)} \\
& =1
\end{aligned}
$$

$$
\therefore A B A^{-1} \in H . \quad A H A^{-1} \leq H . \quad \forall A \in G .
$$

By normality test．$H \triangleleft G$ ．i．e．$S L_{n}(\mathbb{R}) \triangleleft G L_{n}(\mathbb{R})$
－prop 3.9
通过 Lagrange the 判断
If H is a subgroup of $G \quad[G: H]=2$ ，then $H \triangleleft G$ ．
proof：Let $g \in G$ ．
If $g \in H$ then $G=H \cup H g$ a disjoint union．
$\because[G: H]=2$ ．
$\therefore G=\frac{H}{g \in H} \cup \frac{H g^{g}}{v}$ ．$\quad($ disjoint union）
Thus $\operatorname{Hg}=G \backslash H$
Similarly．$g H=G \backslash H$ ．
Thus $H g=g H$ for all $g \in G$ ．ie $H \triangleleft G$ ．
ex．Let A_{n} be the alternating group contained in S_{n} ．
$\because\left[S_{n}: A_{n}\right]=2 \quad \rightarrow \frac{\left|S_{n}\right|}{\left|A_{n}\right|}=\frac{2 n}{n}=2 \quad$ Lagrange the
\therefore by prop 3.9 ．$A_{n} \triangleleft S_{n}$
ex．Let $D_{2 n}=\left\langle a, b: a^{n}=1=b^{2} . a b a=b\right\rangle$ be the dikedual $g p$ of order $2 n$ ．

$$
\begin{aligned}
& \because\left[D_{2 n}:\langle a\rangle\right]=2 . \quad \rightarrow \frac{\left|D_{22}\right|}{|\langle a\rangle|}=n \\
& \therefore \text { by } \operatorname{prp} 3.9 . \quad<a\rangle \Delta D_{2 n} .
\end{aligned}
$$

Let $H \& K$ be subgroup of a group G
The intersection $H \cap K$ is the largest subgroup of G contained in both $H \& K$ ． If there is a smallest subgroup of G containing both $H \& K$
＊HUK is the smallest subset containing $H \& K$

- Lemma 3. 10.

Let $H \& K$ be subgroups of G T.F.A.E

1) $H F$ is subgp of G
2) $H K=K H$
3) KH is subgp of G

$$
\begin{aligned}
2) \Rightarrow 1) & \because 1 \cdot 1 \in H K \quad h k \in H K \\
& \therefore(h k)^{-1}=k^{-1} h^{-1} \in K H=H K
\end{aligned}
$$

- for $h k, h_{1} k_{1} \in H K$.
we have $k h_{1} \in K H=H K, k h_{1}=h_{2} k z$.

$$
(h k)\left(h_{1} k_{1}\right)=h\left(k h_{1}\right) k_{1}=h\left(h_{2} k_{2}\right) k_{1}=\left(k h_{2}\right)\left(k_{2} k_{1}\right) \in H k .
$$

By Sulggp test. HK is a surge of G.

1) $\Rightarrow 2)^{(c)}$ Let $b h \in K H$. Since $H \& F$ are surges of G. we have $h^{-1} \in H$. and $k^{-1} \in K$.
$\because H K$ is also a surge of G. we have $k h=\left(h^{-1} k^{-1}\right)^{H} \in H K$.

$$
\therefore K H \subseteq H K
$$

(\geqslant) if $h k \in H k$. $H K$ is a subgp of G.

$$
(h k)^{-1}=k^{-1} h^{-1} \in H K \quad k^{-1} h^{-1}=h_{1} k_{1}
$$

Thus. $\quad h k=k_{1}^{-1} h_{1}^{-1} \in K H \quad \therefore H K \leq K H$.

$$
H K=K H
$$

－prop 3．11．
Let H\＆K be surbgroups of a gp G ．

$$
\begin{aligned}
& \text { 1 } H \triangleleft G \vee K \triangleright G \Rightarrow H K=K H \text { is a sulggp of } G . \\
& \text { 2) } H \triangleleft G \wedge K \triangleleft G \Rightarrow H K \triangleleft G
\end{aligned}
$$

proof：1）Assume $H \triangleleft G$ ．

$$
H K=\bigcup_{k \in k} H K=\bigcup_{k \in k} k H=K H .
$$

By lemma 3．10．$H k=k H$ is a subgroup of G ．
2）Let $g \in G$ ．$h k \in H k$ ．

$$
\begin{aligned}
& \because H \triangleleft G \cdot K \triangleleft G . \\
& \therefore g^{-1}(h k) g=g^{-1}\left(\lg g^{-1}()\right) g \\
& \\
&
\end{aligned}=\left(g^{-1} h g\right)\left(g^{-1} k g\right) \in H K .
$$

－def．normatier $\quad \mathrm{NG}_{\mathrm{G}}(\mathrm{H})$
Let H be a subgg of a $g p G$ ．The normatier of $H \cdot(N G(H))$ is：

$$
\begin{aligned}
& N_{G}(H)=\{g \in G: g H=H g\} . \\
\times & H \triangleleft G \Leftrightarrow N_{G}(H)=G \\
& N_{G}(H): \text { 满炎 } g H=H g \text { ing } g>\text { 若|H|=1. 则 }\left|N_{G}(H \mid)\right|=[G: H] \\
& {[G: H] \text { : distinct subgp } }
\end{aligned}
$$

－Cor 3.12 ．
Let $H \& K$ be sulgges of a gp $G . K \in N G(H) \Rightarrow H K=K H$ is a subgp of G ．

- Thu 3.13
$H \triangleleft G$ and $K \triangleleft G$ satisfy $H \cap K=\{1\} \quad \Rightarrow \quad H K \cong H \times K$.
proof: Let $m, n \in \mathbb{N} \operatorname{gcd}(m, n)=1$
Let G be a cyclic gp of order mn. $G=\langle a\rangle$.

$$
o(a)=m n
$$

Let $H=\left\langle a^{n}\right\rangle \quad K=\left\langle a^{m}\right\rangle$

$$
\begin{aligned}
& H\left|\left|=O\left(a^{n}\right)=m \quad\right| K\right|=o\left(a^{m}\right)=n \\
& |H \| K|=m n=|G| \\
& G \cong H \times K
\end{aligned}
$$

\rightarrow We only need to consider cyclic gp of prime order.
\rightarrow Claim 1. If $H \Delta G$ and $K \Delta G$ satisfy $H \cap K=\{1\}$. then $h k=k h \quad \forall h \in H$ and $k \in k$.
prove daim 1: Consider $x=h k(k h)^{-1}=h k h^{-1} k^{-1}$

$$
\begin{aligned}
& k h k^{-1} \in k H k^{-1} \in H \\
& \therefore x=h\left(k h^{-1} k^{-1}\right) \in H
\end{aligned}
$$

Similarly. $x \in K . \quad \because x \in H \cap k=\{1\} \quad \therefore h^{-1} k^{-1}=1 \quad \Rightarrow h k=k h$
Since $H \Delta G$, by prep 3,11. $H K$ is a subgroup of G.
\rightarrow L aim 2: σ is an IM
Define $\sigma: H \times k \mapsto H K \quad(h, k) \rightarrow h k \quad \forall h \in H \quad k \in K$.
prove Claim 2: Let $(h, k)\left(h, k_{1}\right) \in H \times k$. By Maim 1. $h_{1} k=k h$.

$$
\begin{aligned}
\sigma\left((h, k) \cdot\left(h_{1}, k_{1}\right)\right) & =\sigma\left(\left(h h_{1}, k k_{1}\right)\right) \\
& =h h_{1} k k_{1} \\
& =h k h_{1} k_{1}(\text { by Maim }) \\
& =\sigma((h, k)) \sigma\left(\left(h_{1}, k_{1}\right)\right)
\end{aligned}
$$

$\therefore \sigma$ is a $H M$.
\because by do of HK. σ is onto

$$
\begin{aligned}
& \therefore \sigma(c h, k))=\sigma\left(\left(h_{1}, k\right)\right) \Rightarrow h\left(=h_{1} k_{1}\right. \\
& \therefore h_{1}^{-1} h=k_{1} k^{-1} \in H \cap k=\{1\} \\
& \therefore h^{-1} h=1 \quad k, k^{-1}=1 . \quad \text { ie } h=h . k_{1}=k .
\end{aligned}
$$

$\therefore \sigma$ is 1 to 1 Chain holds
So $H K \cong H x K$

- Cor 3.14

Let G be a finite group, $H, K \nabla G, H \cap K=\{1\}$. $|H||K|=|G|$.
Then $G \cong H \times K$
proof: $\because H, K \Delta G \therefore H K \hat{E} G \quad(3,11)$
By Lagrange the $|H|||G|$

$$
\begin{aligned}
& \because H \cap K=\{1\} \quad \therefore \operatorname{gcd}\{|H|,|k|\}=1 \\
& \therefore|H K|=||+||K|=|G| \\
& \because \text { size-样 \& } H K \cong G \quad \therefore H K=G . \\
& \because H K \cong H \times K \quad \therefore G \cong H \times K
\end{aligned}
$$

4. Isomorphism Theorems
4.1 Onotient Group

- def. multiplication

Let G be a gp, K be a subgroup of G. It is natural to ark if we can male the set of right wests of k. ie $\left\{k_{a}: a \in G\right\}$ into a gp.
A natural way to define multiplication on this set is: $K_{a} \cdot K b=K a b \quad a b \in G$. (*)
Note $k_{a}=k_{a_{1}}, k b=k b_{1} . \quad a \neq a_{1}, b \neq b_{1}$
$\therefore m$ order for $(*)$ to make sense. a mecssang condition is:

$$
k_{a}=k_{a_{1}} \quad k b=k_{1} . \Rightarrow k_{a b}=k a_{1} b_{1}
$$

In this case, the multiplication $K_{a} K b=K a b$ is well-defined.
-def. quotient gp (of G by k) G / K
Let $K \triangleleft G$. The gp G / k of all cosets of K in G is called the quotient gp of G by K.
$\varphi: G \rightarrow G / K$ given by $Y(a)=K_{a}$ is coset map
identity: K
inverse of $x \cdot k$ is $x^{-1} \cdot k$.
K is normal subgp of $G \quad K \triangleleft G$

- Simple group

The only norma surges of G are $\{e\} \& G \Rightarrow G$ is simple subyp

- def. Kernel $\operatorname{Ker}(\alpha)$
$\alpha: G \rightarrow H$ is a $H M g p \quad$ Kernel of $\alpha: \operatorname{Ker}(\alpha)=\{g \in G: a(g)=e\}$
- def image in (α)

$$
\operatorname{im}(\alpha)=\alpha(G)=\{\alpha(g): g \in G\} \leq H
$$

* if α is surjective. Then in $\alpha=H$
- def. $\bar{\alpha}$.

$$
\begin{aligned}
K=\operatorname{Ker}(\alpha) \quad \overline{ }) & G / K \rightarrow \operatorname{im}(\alpha) \quad \bar{k}(K g)=\alpha(g) \\
K g=K g, & \Leftrightarrow g g_{1}^{-1} \in K \\
& \Leftrightarrow \alpha\left(g g_{1}^{-1}\right)=1 \\
& \Leftrightarrow \alpha(g)=\alpha\left(g_{1}\right)
\end{aligned}
$$

$\because \bar{\alpha}$ is one to one and well defied

$$
\therefore \alpha \text { is onto }
$$

- Lemma 4.1

Let K be a sully G. TFAE:

1) $K \triangleleft G$
2) $a \cdot b \in G$. the multiplication $k a k b=k_{a} b$ is well-defined
proof: (1) \Rightarrow (2) Let $k_{a}=K_{a_{1}} \quad k b=k_{b}$
Thus $a a_{1}^{-1} \in K \quad b b^{-1} \in K$.
To got $K a b=K a, b_{1}$, it need to show $a b\left(a, b_{1}\right)^{-t} \in K$.

$$
\because k \Delta G . \quad \therefore a k a^{-1} \subseteq k .
$$

Thus $a b\left(a, b_{1}\right)^{-1}=a b\left(b_{1}^{-1} a_{1}^{-1}\right)=a\left(b b_{1}^{-1}\right) a_{1}^{-1}$

$$
\begin{aligned}
=a\left(b b_{1}^{-1}\right) a^{-1} a a_{1}^{-1}= & \left(a\left(b b_{1}^{-1}\right) a^{-1}\right)\left(a a_{1}^{-1}\right) \in K \\
& \hookrightarrow K a b=K a b_{1}
\end{aligned}
$$

(2) $\Rightarrow(1)$ if $a \in G$. to show $K \nabla G$. we med aka $a^{-1} \in K$ for all $k \in K$.

$$
\begin{aligned}
& \because K_{a}=k_{a} \quad k_{k}=k_{1} . \\
& \therefore b_{y}(2), K_{a}=k_{a} k_{1}=k_{a} \quad \therefore a k a^{-1} \in K \quad K \Delta G .
\end{aligned}
$$

- prop 4.2

Let $K \circ G . G / K=\{k a: a \in G\}$ (f 旨 set of cosets of K)

1) G / K is a gp under the operation $K a K b=K_{a b}$.
2) The mapping $\varphi: G \rightarrow G / K$. given by $\varphi(a)=K a$ is an onto $H M$.
3) $[G=K]$ is finite $\Rightarrow|G / k|=[G: K]$
$|G|$ is finite $\Rightarrow|G / k|=\frac{|G|}{|k|}$
proof: 1) by lemma 4.1. The operation is well-dffied and G / K is closed under the operation

$$
\because K_{a} K_{1}=K_{a}=K_{1} K_{a} .
$$

\therefore The identity of G / K is $K=K_{1}$. for all $K_{a}=G / K$.

$$
\because K_{a} K_{a}^{-1}=k_{1}=K_{a}^{-1} K_{a} .
$$

\therefore the inverse of Ka is Ka^{-1}.
$k_{a}\left(k_{b} K_{c}\right)=\left(k_{a} k_{b}\right) K_{c}$ (by associativity of G)
$\therefore G / K$ is a group
2) φ is dearly onto

$$
\therefore \varphi(a) \varphi(b)=k_{a} k_{b}=k_{a b}=\varphi(a b)
$$

$\therefore \varphi$ is an onto HM
3) If $[G: K]$ is finite, then $|G / K|=[G: K]$ (by def of index $[G: K]$ $\because|G|$ is finite

$$
\therefore|G / K|=[G ; K]=\frac{|G|}{|K|}
$$

-prop 4.3
$\alpha: G \rightarrow H . \alpha$ is $H M$.

1) in (α) is a subge of H
2) $\operatorname{Ker}(\alpha) \triangleleft G$
proof: 2$) ~ g \in G . \quad h \in \operatorname{Kev}_{v}(\alpha)$

$$
\begin{aligned}
& g g^{-1} \\
& \alpha(g) \alpha(h) \alpha\left(g^{-1}\right) \\
&=\alpha(g) \alpha\left(g^{1}\right) \\
&=1 \\
& \therefore \operatorname{ghg} \\
&-1 \in \operatorname{Ker}(\alpha) \\
& \therefore \operatorname{Ker}(\alpha) \triangleleft G
\end{aligned}
$$

ep. Consider determinant map def: $G \alpha_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{*}$.

$$
\operatorname{ker}(\operatorname{det})=S \alpha_{n}(\mathbb{R}) \Rightarrow S \alpha_{n}(\mathbb{R}) \Delta G \alpha_{n}(\mathbb{R})
$$

ep. $\operatorname{sgn}(\sigma)=\left\{\begin{array}{cc}1 & \text { if } \sigma \text { is even } \\ -1 & \text { if } \sigma \text { is odd }\end{array} \quad \sigma \in S_{n}\right.$.

$$
\operatorname{Ker}(\operatorname{sgn})=A_{n} \Rightarrow A_{n} \text { is normal }
$$

$\alpha: G \rightarrow H$ a homomorphism. $K=\operatorname{ker}(\alpha)$
$\varphi: G \rightarrow G / K$ coset map isomorphism $\bar{\alpha}: G / k \rightarrow \operatorname{im}(\alpha) \quad \bar{\alpha}(k g)=\bar{\alpha}(\varphi(g))=\alpha(g)$

- thm 4.4 (First isomorphism Thm)

If a map $\alpha: G \rightarrow H$ be a group Homomorphism.
Then $G / K \operatorname{Ker}(\alpha) \cong \operatorname{in}(\alpha)$
proof: Let $K=\operatorname{Ker} \alpha$.

$$
\because K \triangleleft G . G / K \text { is a } g P \text {. }
$$

\therefore Pefne $\bar{\alpha}: G / k \rightarrow \operatorname{in} \alpha$ be $\bar{\alpha}(k g)=\alpha(g) \quad K g \in G / k$

$$
\begin{aligned}
K g=K g_{1} & \Leftrightarrow g g_{1}^{-1} \in K \\
& \Leftrightarrow \alpha\left(g g_{1}^{-1}\right)=1 \\
& \Leftrightarrow \alpha(g)=\alpha\left(g_{1}\right)
\end{aligned}
$$

$\therefore \bar{\alpha}$ is well-defined. 且 one-to-one 且 cleady outo
\rightarrow For ght $\in G$.

$$
\begin{aligned}
\bar{\alpha}(K g k h) & =\bar{\alpha}(k g h)=\alpha(g h)=\alpha(g) \alpha(h) \\
& =\bar{\alpha}(k g) \bar{\alpha}(k h)
\end{aligned}
$$

$\therefore \bar{\alpha}$ is $H M$

$$
\therefore \operatorname{im} \alpha \cong G / \operatorname{ker} \alpha
$$

-prop 4.5
$\alpha: G \rightarrow H$ is a $H M$. $K: \operatorname{Ker}(\alpha)$
α function uniquely as $\alpha=\bar{\alpha}$ where $\varphi: G \rightarrow G / K$ is the coset map $\bar{\alpha}=\bar{\alpha}\left(K_{g}\right)=\alpha(g) \quad \varphi_{\text {is outo. }} \bar{\alpha}$ is one-totone
G is a cydic gp $G=\langle g\rangle$
$\alpha:(\mathbb{Z},+) \rightarrow G$ defined $\alpha(n)=g^{k} \quad \forall n \in \mathbb{Z} . \alpha$ is outo
If $\circ(g)=\infty$. $\operatorname{Ker}(\alpha)=\{0\}$ by lst $2 M . \quad G \cong \mathbb{Z} /\{0\} \cong \mathbb{Z}$
Kendel $(\alpha)=\{n \in \mathbb{Z} \cap \bmod (\log))=0\} \quad G \equiv \mathbb{Z} 0(g)$
If G is agdic $G \cong \mathbb{Z}$ or $G \cong \mathbb{Z}_{K}$. where $K=$ order of G

- The 4.6 (ind IM theorem)

Let $H \& K$ be subgps of $G . K \triangleright G$.
Then MK is a surgy of G. $K \boxtimes H K, H \cap K \triangleleft H . \quad H K / K \cong H / H \cap K$
proof: $\because K A G \quad \therefore H K$ is a surge (poop 3.11)

$$
H K=K H \quad K \Delta H K
$$

Consider the map $\alpha: H \rightarrow H K / K . \quad \alpha(h)=K h$.
Thus α is a HM.
If $x \in H K=K H . \quad x=K h$. Then $K x=K(K h)=K h=\alpha(h)$
Thus α is onto.
By prop 3.3. Ger $\alpha=\{h \in H: K h=K\}=\{h \in H: h \in K\}=K \cap H$ By list IM theorem. $H / H \cap K \cong H K / K$.

- The 4.7 (3rd IM theorem)

Let $K \cong H \subseteq G$ be gps with $K \triangleright G . H \nabla G$. Then H / K is G / K.
proof: Define $\alpha: G / K \rightarrow G / H$. by $\alpha(\mathrm{Kg})=H g \quad \forall g \in G$
Note that if $\mathrm{kg}=\mathrm{kg}$, then $\mathrm{gg}^{-1} \in K \subseteq H$.
$\therefore \mathrm{Hg}=\mathrm{Hg}_{1} . \alpha$ is well-dofined
It is clear that α is outs. $\operatorname{Ker}(\alpha)=\{\mathrm{Kg}: \mathrm{Hg}=\mathrm{H}\}$

$$
=\{K g: g \in H\}=H / K .
$$

By st IM the. $(G / K) /(H / K) \cong G / H$

5．Group Actions
5．1 Coyly＇s Theorem
－Copley＇s Tho
If G is a finite op order n ．Then G is isomorphism to a subgroup of S_{n} ．
Every subgp \cong a collection of pervantations
proof．Let $G=\left\{g_{1}, \cdots, g_{n}\right\}$ ．$S_{G}: G$ in permutation gp．
prove $S_{G} \cong S_{n}$ ：

$$
S_{G}=\operatorname{im} \alpha
$$

$\sigma: G \rightarrow S_{G} \leftarrow$ infective $H M$ ．
surjective when 跟制codomain to its image
$\mu_{a}: G \rightarrow G \quad \mu_{a}(g)=a g$
$a \in G . g \in G . \rightarrow$ bijection $\mu_{a} \in S_{a}$
$\sigma: G \rightarrow S_{G} \quad \sigma(a)=\mu_{a}$
\downarrow 用定义证明 μ_{a} 同时也定 $1-1 \& H M$

$$
\begin{aligned}
& \quad \mu_{a}=\mu_{b} \Rightarrow \mu_{a}(1)=\mu_{b}(1) \Rightarrow a=b . \quad \text { one to one } \\
& \therefore \mu_{a} \mu_{b}=\mu_{a b} \in \mu_{a} \mu_{b}(g)=\mu_{a}(b g)=a b g=\mu_{a b}(g) \quad+M \\
& \therefore B y \mid \text { st IM th } G \cong \operatorname{im} \sigma .
\end{aligned}
$$

＊Sometimes we can find a smaller int in．sit．G is contained is S_{m}
ex．Let H be a subgr of G ．$[G: H]=m<\infty$ $X=\left\{g_{1} H, g_{2} H, \cdots, g_{m} H\right\}$ be the set of all distinct left coset of H in G For $\alpha \in G$ ．define $\lambda_{a}: X \rightarrow X$ by $\lambda_{a}(g H)=\operatorname{ag} H \quad \forall g H \in X$ ． Then λa is a bijection．
$\therefore \lambda_{a}$ is a bijection．$\lambda_{a} \in S_{x}$ ，（the permutation g_{p} of $\left.X\right)$ Consider map $\tau: G \rightarrow S_{X}$ defined by $\tau(a)=\lambda a$ ．
For $a, b \in G . \lambda_{a b}=\lambda_{a} \lambda_{b} . \quad \therefore \tau$ is $H M$ ＊if $a \in K \in \tau$ ．then λa is the identity permutation $a H=\lambda_{a}(H)=H$

$$
\therefore K e r \tau \subseteq H
$$

- Thm 5.2 Extended Cayley's Theorem

Let H be a subge of a gp G with $[G: H]=m<\infty$. If G has no normol subgr contained in H exapt $\{1\}$, then G is isoworphic to a subgyp of S_{m}.

$$
\operatorname{ker} t=K \subseteq H
$$

$$
0 \frac{|G|}{|H|}=|G|
$$

H 不能o contain a cormal sulegp of G

$$
\begin{aligned}
& G / K=\operatorname{im\tau } \\
& \left.\Leftrightarrow \frac{|G|}{|K|}=\lim \tau \right\rvert\, \\
& \Leftrightarrow \frac{|G|}{|K|}=|G| \quad(\tau(G)=\operatorname{im}(\alpha)) \\
& \Leftrightarrow|K|=1
\end{aligned}
$$

proof: $|X|=[G: H]=m \quad S_{x} \cong S_{m}$.

$$
\tau: G \rightarrow S_{x} \leftarrow H M \quad \text { Ker } \tau \in H . \quad \frac{|G|}{|K|}=|\lim \tau|
$$

\therefore By lst IM Thm, G/kert®imt. $\sim=1$
$\because \operatorname{ker\tau } \subseteq H . \quad \operatorname{ker} \tau \Delta G$.
$\therefore \operatorname{Ker} \tau=\{13 . \quad \Rightarrow \tau$ is injective.

$$
\therefore G \cong i m \tau . \quad S_{x} \cong S_{m}
$$

－Cor 5.3
Let G be a finite $g p$ and p be smallest pine sit $p||G|$ If H is a surgy of G with $[G: H]=p$ ，then $H \triangleleft G$ ． （generalization of prop 3.9 ）

$$
\begin{aligned}
& |G|=p_{1}^{k^{k}} p_{2}^{k_{2}} \ldots p_{n}^{k_{n}} \quad p_{1} \text { 督小 }^{|-H|}=p_{1} \quad \Rightarrow H 0 G \\
& {[G: H]=\frac{G \mid}{\mid-1}=}
\end{aligned}
$$

poof．Let X be the set of all distinct left corsets of H in G ．

$$
\Rightarrow \quad|x|=p . \quad S_{x} \cong S_{p}
$$

Let $\tau: G \rightarrow S_{x} \cong S_{p}$ be the gp $H M$ defined in the above example with $k=\operatorname{ker} \tau \subseteq H$ ．

$$
\text { 所有 } g k \text { 组成 } \cos g p(\notin \Delta G)
$$

By the list $I M$ the，$G / E \cong$ in $\tau \subseteq S_{p}$ ．
$\therefore G / K$ is IM to a sulgp of S_{p} ．

$$
\begin{aligned}
& \because k \leqslant H . \quad \text { if }[H: K]=k \\
& \therefore|G / K|=\frac{|G|}{|k|}=\frac{|G|}{|H|} \frac{|H|}{|k|}=p k
\end{aligned}
$$

By lagrange ohm，$p k|p!\Rightarrow k|(p-1)$ ！
$\because K||H|$ ，which divides $| G \mid$ and p is the smallest prime dividing $|G|$ ．
\therefore every prime divisor of k must be $\geqslant p$ unless $k=1$ ．
Combining this with $k \mid(p-1)$ ！，this focus $k=1$ which implies $k=H$ $\therefore H \triangle G$ ．
5.2 Group Actions

- def. (left) group action

Let G be a gp. X be a mon empty set.
A (left) group action of G on X is a mapping $G \times X \rightarrow X$.
$(a, x) \mapsto a x$. sit $口 \mathbb{B} \cdot x=x \quad \forall x \in X$

$$
\Rightarrow a \cdot(b \cdot x)=(a b) x \quad \forall a \cdot b \in G . \quad x \in X .
$$

$\longrightarrow G$ acts on X.

* Let G be a $g p$ acting on a set $X \neq \phi$.

For $a, b \in G \quad x, y \in X$
$B y$ 1) \& 2). $a \cdot x=b \cdot y . \Leftrightarrow\left(b^{-1} a\right) \cdot x=y$

$$
a x=a y \quad \Leftrightarrow x=y \text {. }
$$

ex. If G is a gp. Let G acts on itself. ie. $x=G$ by $a x=a \times a^{-1}$ for all $a, x \in G . \quad 1 \cdot x=|x|^{-1}=x$.

$$
a \cdot(b \cdot x)=a\left(b \times b^{-1}\right)=a\left(b \times b^{-1}\right) a^{-1}=(a b) \times(a b)^{-1}=(a b) x \text {. }
$$

$L D G$ acts on itself by conjugation.

- Remark

For $a \in G$. define $\sigma_{a}: X \rightarrow X$ by $\sigma_{a}(x)=a x$. for all $x \in X$.
Then 1) $\sigma_{a} \in S_{x}$
2) $V: G \rightarrow S_{x}$ green by $V(a)=\sigma_{a}$. is a gp HM with $\operatorname{ker} v=\{a \in G: a x=x \quad \forall x \in X\}$.
the gp $H M \theta: G \rightarrow S_{x}$ gives an equivalent of of gp action of G or X if $X=G .|G|=n$. $\operatorname{Ker} \theta=1$. then the map $\theta: G \rightarrow S_{G} \cong S_{n}$ shows that G is isomorphism to a surgy if $S_{n} . \&$ Cayley's the
－def．orbit \＆stabilier
Let G be a ap acting on a set X and $x \in X$
orbit of $\left.X: G \cdot x=\{g)^{x}: g \in G\right\} \leqslant X$
stabilizer of $X: S(x)=\{g \in G: g \cdot x=x\} \leqslant G$
－Prop 5.4.
Let G be a gp action on a set $X \neq \beta \quad x \in X$ ．
Then（1）$S(x)$ is a surge of G
（2）\exists a bijection from $G: x$ to $\{g S(x): g \in G\}$

$$
|G x|=[G: S(x)]
$$

proof：（1）Since $1 \cdot x=x$ ．we have $1 \in S(x)$ ．
Also，if $g \cdot h \in S(x)$ ，then $(g h) \cdot x=g(h \cdot x)=g \cdot x=x$

$$
g^{-1} x=g^{-1}(g x)=\left(g^{-1} g\right) x=1 \cdot x=x
$$

Thus．ghee．$g^{-1} \in S(x)$ ．
By Subgp test，$S(x)$ is a subgep of G ．
（2）Consider the map $\varphi: G: x \rightarrow\{g S: g \in G\}$ defined $b y \quad \varphi(g \cdot x)=g S$ ．

$$
\begin{align*}
g x=h x & \Leftrightarrow\left(h^{-1} g\right) \cdot x=x \tag{5}\\
& \Leftrightarrow h^{-1} g \in S \\
& \Leftrightarrow g S=h S
\end{align*}
$$

人与g表示的东西相同

Thus y is well－defined
$\because Y$ is clearly onto．\＆bijection

$$
\therefore|G \cdot x|=|\{g S: g \in G\}|=[G: S]
$$

- Thu 5.5 Orbit Decomposition Thu.

Let G be a gp acting on a finite set $X \neq \phi$.

$$
X_{f}=\{x \in X: a x=x \quad \forall a \in G\} \quad\left(* x \in X_{f} \Leftrightarrow|G \cdot x|=1\right)
$$

Let $G \cdot x_{1}, G \cdot x_{2}, \cdots, G x_{n}$ denote distinct nonsingleton orbits
Then $|X|=\left|X_{f}\right|+\sum_{i=1}^{n}\left[G: S\left(x_{i}\right)\right]$.

$$
\therefore \quad\left|G \cdot x_{2}\right|>1
$$

$\mathbb{R}_{\text {sigleton }}{ }_{\text {nousingleton }} \frac{|G|}{\left|S_{i}\right|}$
port: Note that for $a, b \in G, x, y \in X$

$$
\begin{aligned}
a x=b y & \Leftrightarrow\left(b^{-1} a\right) \cdot x=y . \\
& \Leftrightarrow y \in G x \\
& \Leftrightarrow G x=G y .
\end{aligned}
$$

\therefore The 2 orbits are either disjoint or the same which follows that the orbit form a disjoint union of X.

$$
\because x \in X_{f} \Leftrightarrow|G x|=1
$$

$\therefore X \backslash X_{f}$ contains all monsingletons orbits. which are disjoint.
By prop 5.4, $|X|=\left|X_{f}\right|+\sum_{i=1}^{n}\left|G x_{i}\right|$

$$
=\left|X_{f}\right|+\sum_{i=1}^{n}\left[G: S\left(x_{i}\right)\right]
$$

\rightarrow Let G be a gp acing on itself by conjugation.
Then $G_{f}=\left\{x \in G: g \times g^{-1}=x \quad \forall g \in G\right\}$
$=\{x \in G: g x=x g \quad \forall g \in G\}$ which is center of G.
\rightarrow For $x \in G$ $\left(G_{f}=Z(G)\right)$

$$
S(x)=\left\{g \in G: g x g^{-1}=x\right\}=\{g \in G: g x=x g\}
$$

The set is celled centalier of X and is denoted by $S(x)=C_{G}(x)$ In this case. the orb :t $G \cdot x=\left\{g \times g^{-1}: g \in G\right\}$ is conjugate class of X.

- Cor 5.6 Class equation.

Let G be a finite $g p$ and let $\left\{g x, g^{-1}: g \in G\right\}, \cdots,\left\{g x_{n} g-1: g \in G\right\}$
denote the distinct nonsingleton conjugate classes
Then $|G|=|Z(G)|+\sum_{i=1}^{n}\left[G: C G\left(x_{i}\right)\right]$

- Lemma 5.7

Let G be a gp of order p^{m} acting on a finite set $X \neq \phi$.
Let $X_{f}=\{x \in X: a \cdot x=x \quad \forall a \in G\}$
Then $|x| \equiv\left|X_{f}\right| \quad(\bmod p)$
prof: By Thu 5.5 .

$$
|X|=\left|X_{f}\right|+\sum_{i=1}^{n}\left[G: S\left(x_{i}\right)\right] \text { with }\left[G: S\left(x_{i}\right)\right]>1 \quad(1 \leqslant i \leqslant n)
$$

$\because\left[G: S\left(x_{i}\right)\right]$ divides $|G|=p^{m}$ and $\left[G: S\left(x_{i}\right)\right]>1$.
$\therefore p \mid\left[G: S\left(x_{i}\right)\right]$ for all i.

$$
\begin{aligned}
{\left[G: S\left(x_{i}\right)\right]=} & \frac{|G|}{\left|S\left(x_{i}\right)\right|} \rightarrow p^{m} \\
\left|S x_{x_{i}}\right|||G| \Rightarrow & \underbrace{\left|S_{x_{i}}\right|}_{p^{k}(k \leq m)} \mid p^{m}
\end{aligned}
$$

－Thy 5.8 Cauchy Thm $\quad \rightarrow$ 铺垫 Sh low
Recall that as a consequence of Lagrange The If a $g p G$ is finite $g \in G$ ，then $o(g)||G|$相友的问这：If $m||G|$ ，Does G contain an elemat of order m ？

Let p be a prime and G a finite gp． If $p||G|$ ，then G contains an dement of order p ．
proof：Define $X=\left\{\left(a_{1}, \ldots, a_{p}\right): a_{1} \in G, a_{1}, \ldots a_{p}=1\right\}$
$\because a_{p}=\left(\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{p-1}\end{array}\right)^{-1}$ is uniquely defined
\therefore If $|G|=n$ ，we have $|x|=n^{p-1}$ 对于每个 a_{i} ，都有n种选择．
$\because p|n \quad \therefore| X \mid \equiv 0(\bmod p)$最后ap 足 uniquely determined
Let the $\mathbb{Z}_{p}=\left(\mathbb{Z}_{p},+\right)$ o ot on X by cycling 旬个element 移k位 i．e．for $k \in \mathbb{Z}_{p} . \quad k\left(a_{1}, \cdots, a_{p}\right)=\left(a_{k+1}, a_{k+2}, \cdots, a_{p}, a_{1}, \ldots a_{k}\right)$ one can verify that this action is well－defined

Let X_{F} be defined as The 5．5．
Then $\left(a_{1}, \cdots, a_{p}\right) \in X_{F} \Leftrightarrow a_{1}=\cdots=a_{p}$

$$
\begin{aligned}
& \because(1, \cdots, 1) \in X_{F} \quad \therefore\left|X_{F}\right| \geqslant 1 \\
& \because|X| \equiv 0(\bmod p) \quad\left|X_{F}\right| \geqslant 1 \\
& \therefore\left|X_{F}\right| \geqslant p .
\end{aligned}
$$

\therefore There exists $a \neq 1$ sit $(a, \cdots, a) \in X_{F}$
which implies $a^{p}=1$
$\because p$ is a prime $a \neq 1$

$$
\therefore 0(a)=p
$$

6. Sylow Theorem
$6.1 \quad P$-Groups

- def. p-group.

Let $p \in$ prime. A group in which every element has order of a non-negative power of p is a p-group

- Cor 6.1

A finite $g p G$ is a $p-g p \Leftrightarrow|G|$ is a power of p.
proof: \Leftrightarrow prove by contradiction: $|G|=p^{n} p_{2}{ }^{{ }^{2}} \ldots p_{k}^{n_{k}} \quad(k \geqslant 2)$
$\because p_{2}(\mid G) \therefore$ By lonely's Thu. ヨ an element of order p_{2}
$\therefore G$ is not a $p-g p$

$$
\Leftrightarrow\left|G l=p^{n} . \quad g \in G \Rightarrow \circ(g)\right| p^{n} . \quad \therefore \circ(g)=p^{\alpha} \quad \alpha \leqslant n
$$

- Cor 6.2 $\quad\{\{z: z g=g z\}$

The center $Z(G)$ of a mon-trivial finite p-gp contains more than 1 element
proof. Recall class equation (cors.6) of G :

$$
\begin{aligned}
& \quad|G|=|Z(G)|+\sum_{i=1}^{n}\left[G: C_{G}\left(X_{1}\right)\right] \text { where }\left[G: C_{G}\left(X_{1}\right)\right]>1 \\
& \because G \text { is a } p-g p
\end{aligned}
$$

\therefore by cor 6.1, $|G|$ is a power of p. by lemma 5.7. $|Z(G)| \equiv|G|(\bmod p) \rightarrow p||Z(G)|$ $\because|Z(G)| \geqslant 1$ (Since $\mid \in Z(G)$)
$\therefore|Z(G)| \geqslant p \quad(Z(G)$ has of least pelements)

- Lemma 6.3

If H is a p-subgp of finite gp G.
then $\left[N_{G}(H): H\right] \equiv[G: H](\bmod p)$
the nomatizer of $H: N_{G}(H):=\left\{g \in G: g H^{-1}=H\right\} \quad(H \triangleleft N G(H))$
proof. Let X be the set of all left coset of H in $G . \quad|X|=[G: H]$
Let H act on X by left multiplication.
For $x \in G$, we have

$$
\begin{aligned}
x H \in X_{F} & \Leftrightarrow h x H=x H \quad \forall h \in H \\
& \Leftrightarrow x^{-1} h x H=H \quad \forall h \in H \\
& \Leftrightarrow x^{-1} H x=H \\
& \Leftrightarrow x \in N_{G}(H)
\end{aligned}
$$

$\therefore\left|X_{F}\right|$ is the number of cosets $x H$ with $x \in N G(H)$

$$
\left|X_{F}\right|=\left[N_{G}(H): H\right]
$$

By lemma 5.7. $\left[N_{G}(H): H\right]=\left|X_{F}\right| \equiv|X|=[G: H](\bmod p)$

- Cor 6.4

Let H be a p-subgp of a gp G.
if $p \mid[G: H]$, then $p \mid\left[N_{G}(H): H\right]$ and $N_{G}(H) \neq H$
proof: $\because p \mid[G: H]$
\therefore By lemma 6.3. $[N G(H): H] \equiv[G: H]=0$ land $p]$
$\because p \mid\left[N_{G}(H): H\right] \quad[\operatorname{NG}(H): H] \geqslant 1(\operatorname{Sin} \alpha H \subseteq N G(H))$
$\therefore\left[N_{G}(H): H\right] \geqslant p$
$\therefore N_{G}(H) \neq H$
6.2 Sylow's Three Theorems

- First Sylow Thy (Tho 6.5)
- Let G be a $g p$ of order $p^{n} m$, where $p \in$ prime. $n \geqslant 1 \quad \operatorname{gcd}(p, m)=1$ Then G contains a surge of order $p^{i} \quad \forall i: 1 \leq i \leq n$.
- Every surgy of G of order $p^{i}(i<n)$ is normal in some subgp of order p^{i+1} proof. Prove by induction
$\rightarrow i=1 \quad|G|=p^{n} m \quad \operatorname{gcd}(p, m)=1 \Rightarrow G$ contain subggp order $p ;$
$\because p||G|$ by Cauchy's The.
$\therefore G$ contains an element a of order $p \quad \mid<a>1=p$
\rightarrow Suppose the statement holds for some $1 \leq i<n$.
H is a surges of G with order P^{i}

$$
\left|H_{1}\right|=|H| \cdot \frac{\left|H_{1}\right|}{|H|}=p^{i} \cdot p=p^{i+1}
$$

Then $p \mid[G: H]$.
By Cor $6.4, p \mid\left[N_{G}(H): H\right] \quad\left[N_{G}(H): H\right] \geqslant p$
By The 5.8. $N_{G}(H) / H$ contains a subgp of order p
Such a gp is of t. H_{1} / H, where H_{1} is a surgy of $N_{G}(H)$ containing H

$$
\begin{aligned}
& \because H \nabla N_{G}(H) \quad \therefore H \nabla H_{1} . \\
& \therefore\left|H_{1}\right|=|H| \cdot \frac{|H|}{|H|}=p^{i} \cdot p=p^{i+1}
\end{aligned}
$$

-def. Sylow p-surge of G. size 敢大 in $p-g p$ A surg P of a $g p G$ is said to be a Sylow p-subgy of G if P is a maximal $p-g p$ of G. ie. $P \leqslant H \subseteq G$ with H a $p-g p \Rightarrow P=H$.
－Cor 6.6
Let G be a $g p$ of order $p^{n} m$ ，where $p \in$ prime．$n \geqslant 1 \cdot \operatorname{gcd}(p, m)=1$
Let H be a p－sabgg of G ．
1）H is a Sylow p－subgp $\Leftrightarrow|H|=p^{n}$
Sylow $p-g p$ 欢兼大的 $p-g p$
2）Every conjugate of a Sylow p－subge is a Sylow p－snbgg $\quad a \cdot x=a \times a^{-1} \in G$
3）If there is only one Sylow p－subgg P ，then $P \Delta G$ ．
－Second Sylow Thm（Thm 6．7）
If H is a p－subgp of a finite $g p G$ ，and P is any Sylow p－subgp of G ，then there exists $g \in G$ s．t．$H \leqslant g P g^{-1}$
In particalar，any 2 Sylow p－subggs of G are conjingote
proof：Let X be the sot of all left cosets of P in G ．
H ast on X by left unltiplication．
By lemma 5．7．$\left|X_{f}\right| \equiv|X|=[G: P](\bmod p)$

$$
\because p \nmid[G: P] \quad \therefore\left|X_{f}\right| \neq 0
$$

Thus there exists $g P \in X_{f}$ for some $g \in G$ ．

$$
\begin{aligned}
g P \in X_{f} & \Leftrightarrow h g P=g P \quad \forall h \in H \\
& \Leftrightarrow g^{-1} h g P=P \quad \forall h \in H \\
& \Leftrightarrow g^{-1} H g \subseteq P \\
& \Leftrightarrow H \subseteq g H g^{-1}
\end{aligned}
$$

If H is a Sylow p－subap．
Then $|H|=|P|=\lg P g^{-1} \mid$

$$
\therefore \quad H=g P g^{-1}
$$

- Third Sylow Thu

Let G be a finite $g p$ and $p \in$ prime. $p||G|$.
then the number of Sylow p-subgps of G divides $|G|$ and is of the form $k p+1$ for some $k \in \mathbb{N} \cup\{0\}$.

$$
|G|=p_{1}^{k_{1}} \cdots p_{n}^{k_{n}}
$$

存在 sylow gp with order: $p_{1}^{k_{1}}, p_{2}^{k_{2}}, \cdots, p_{n}^{k_{n}}$

* Suppose that G B a $g p$ with $|G|=p^{n}$ with $\operatorname{gcd}(p, m)=1$.

Let n_{p} be the number of Sylow p-subgps of G.
By the Third Sylow Thu, we see that $n_{p} \mid p^{n} m \quad n_{p} \equiv 1(\bmod p)$ $\because p \nmid n p \quad \therefore r_{p} / m$
proof: By Thu 6.7, the number of Sylow p-subgp of G is the number of Conjugate of any one of them, say P. This number is $\left[G: N_{G}(P)\right]$ which is a divisor of G.
Let X be a set of all sylow p-subgps of G
P acts on X by conjugation.
Then $Q \in X_{F} \Leftrightarrow g l_{g}^{-1}=\theta$ for $\forall g \in P$.

$$
\Leftrightarrow \quad P \subseteq N_{G}(\theta)
$$

Both P and Q are Sylow p-sulgps of G and $N_{G}(\theta)$
\therefore By Cor 6.6. They are coringate in $N G(Q)$

$$
\because \theta \triangleleft N_{G}(\theta)
$$

\therefore this can only occur if $Q=P$

$$
\therefore Q=P \quad X_{P}=\{P\} .
$$

\therefore By Lemma 5.7. $|X| \equiv\left|X_{F}\right| \equiv \mid(\bmod p)$
$\therefore|X|=k p+1$ for some $k \in \mathbb{N} \cup\{0\}$.
ex. Claim: every gp of order 15 is cyclic.

$$
\begin{aligned}
& n_{3}=\# \text { sylow } 3 \\
& n_{5}=\# \text { sylow } 5 \quad n_{5} \mid 3 \quad n_{5} \equiv 1(\bmod 5)
\end{aligned}
$$

Let G be gp of order $15=3 \cdot 5$.
n_{p} be the number of sylow p-surgy of G. By the third Sylow Tum. $n_{3} / 5$ and $n_{3} \equiv 1(\bmod$ s) Thus $n_{s}=1$. 相似 $n_{s}=1$.
It follows that \exists only one Sylow -3 subgp and Sylow -5 surg of G.
Thus, $P_{3} \triangleleft G$ and $P_{5} \triangleleft G$.
Consider $\left|P_{3} \cap P_{5}\right|$, which divides 3 \& 5 .
Thus $\left|P_{3} \cap P_{5}\right|=1 \quad P_{3} \cap P_{5}=\{1\} \quad\left|P_{3} P_{5}\right|=15=|G|$
It follows $G \cong P_{3} \times P_{5} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{15}$
ex. There are 2 isomorphic classes of gps of order 21 .
Let G be a gp of order $2=3,7$.
n_{p} be the number of sylow p-subgp of G.
Thus we have $n_{3}=1$ or 7. $n_{7}=1$
It follows that G has unique Sylow 7-subgp: P_{7}
Note that $P_{7} \nabla G$ and P_{7} is cydic. $\quad P_{7}=\langle x\rangle . \quad x^{7}=1$
Let H be a sylow 3-subge
$\because H \|=3 \quad \therefore H$ is cydic $H=\langle y\rangle$ with $y^{3}=1$
$\because P_{7} \circ G . \quad \therefore y \cdot y^{-1}=x^{i} \quad 0 \leqslant i \leqslant 6$
$\therefore i^{3} \equiv((\bmod 7) \quad \therefore i=1,2,4$

1) If $i=1$, then $y \times y^{-1}=x$ ie. $y x=x y$ Thus G abelian, $G \cong \mathbb{Z}_{2}$.
2) If $i=2$, then $y x y^{-1}=x^{2} \therefore G=\left\{x^{2} y^{i}: 0 \leq i \leq 6 \quad 0 \leq j \leq 2, y x y^{-1}=x^{2}\right\}$
3) If $i=4$, then $y x y^{-1}=x^{4} \quad y^{2} x y^{2}=y x^{4} y^{-1}=x^{16}=x^{2}$ $* y^{2}$ is also a generator of H. Thus be replacing.

By replacing y by y^{2}, we get back to case (2). It following that there are 2 isomorphism classes of gps of order 21 .
7. Finite Abelian group.
2.1 Primary Decomposition.

Notation: Let G be a $g p: m \in \mathbb{Z}$. We define $G^{(m)}=\left\{g \in G: g^{m}=1\right\}$ - prop 2.1

Let G be an abelian gp. Then $G^{(m)}$ is a subgp of G.
proof: - $1=1^{m} \in G^{(m)}$

- Let $g \cdot h \in G^{(m)}$
$\because G$ is abelian $\quad \therefore(g h)^{m}=g^{m} h^{m}=1$
$\therefore g h \in G^{(m)}$
- If $g \in G^{(m)}$

$$
\left(g^{-1}\right)^{m}=g^{-m}=\left(g^{m}\right)^{-1} \quad g^{-1} \in G^{(m)}
$$

By surge test. $G^{(m)}$ is a surgy of G.

- pop 7.2

Let G be a finite abelian gp with $|G|=m k \quad \operatorname{gcd}(m, k)=1$
Then $11 G \cong G^{(m)} \times G^{(k)}$

$$
\text { 2) }\left|G^{(m)}\right|=m \quad\left|G^{(k)}\right|=k
$$

proof: 1$) \quad \because G$ is abelion $\quad \therefore G^{(m)} \triangleleft G \quad G^{(1)} \Delta G$
$\because \operatorname{gcd}(m, k)=1 \quad \therefore \exists x, y \in \mathbb{Z} \quad$ s.t $m x+k y=1$
Claim 1: $G^{(m)} \cap G^{(k)}=\{1\}$
proof: If $g \in G^{(m)} \cap G^{(k)}$, then $g^{m}=1=g^{n}$.

$$
g=g^{n+k+k}=\left(g^{m}\right)^{x}\left(g^{k}\right)^{y}=1
$$

Claim 2: $G=G^{(m)} \cdot G^{(k)}$
proof: If $g \in G$, then $1=g^{m k}=\left(g^{k}\right)^{m}=\left(g^{n}\right)^{k}$

$$
g^{k} \in G^{(m)} \quad g^{m} \in G^{(k)}
$$

$$
g=g^{* x+k y}=\left(g^{m}\right)^{x}\left(g^{k}\right)^{y} \in G^{(m)} G^{(k)}
$$

Combining Clain $1 \& 2$. by thm 3.13. $G \cong G^{(m)} \times G^{(k)}$
2) Lot $\left|G^{(m)}\right|=m^{\prime} \quad\left|G^{(k)}\right|=k^{\prime}$
$B_{y}(1) . \quad m k=|G|=m^{\prime} k^{\prime}$
Claim: gcd $(m, k)=1$
proof: Suppore $\operatorname{god}\left(m, k^{\prime}\right) \neq 1$
Then there exist a prime s.t $p l_{m} p \mid k^{\prime}$.
By Canchy's thm. $\exists g \in G^{(k)} \quad 0(g)=p$.

$$
\because p \left\lvert\, m \quad \therefore g^{m}=\left(g^{p}\right)^{\frac{m}{p}}\right. \text { ie } g \in G^{(m)}
$$

By (1). $g \in G^{(m)} \cap G^{(k)}=\{1\} \rightarrow$ contradiction

$$
\because \circ(g)=p \quad \therefore \operatorname{gcd}(m, k)=1
$$

$\because m\left|m^{\prime} k^{\prime} \quad \operatorname{gcd}\left(m, k^{\prime}\right)=1 \quad \therefore m\right| m^{\prime}$
Similarly, $k \mid k^{\prime}$

$$
\because m k=m^{\prime} k^{\prime} \quad \therefore m=m^{\prime} \quad k=k^{\prime}
$$

- Thm 7.3 Primany Decomposition Thm. \uparrow Generod in 情况

Let G be a finite abclian $g p$ with $|G|=p_{1}^{n_{1}} \ldots p_{F}^{n_{k}} \quad$ ($p_{1} \ldots p_{k}$ ore distinct primes)
Then 1) $G \cong G^{\left(p p^{n \prime}\right)} \times \cdots \times G^{\left(p_{1}^{(h)}\right)}$

$$
\Rightarrow\left|G^{\left(p_{i}^{n_{i}}\right)}\right|=p_{i}^{n_{i}} \quad(1 \leqslant i \leq k)
$$

ex. Let $G=\mathbb{X}_{13}{ }^{*}$
Then $|G|=12=2^{2} \cdot 3$.

$$
\begin{aligned}
& G^{(4)}=\left\{a \in \mathbb{Z}_{13}^{*}: a^{4}=1\right\}=\{1,5,8,12\} \\
& G^{(3)}=\left\{a \in \mathbb{Z}_{13}^{*}: a^{3}=1\right\}=\{1,3,9\}
\end{aligned}
$$

By Thm 7.3. $\quad \mathbb{Z}_{13}^{*} \cong\{1,5,8,12\} \times\{1,3,9\}$

7．2 Structure Thu of Finite Abelian Groups By Thu 2．3．a finite alelian gp is isomorphic to a direct product of finite abelian gps of prime power order．Thus is suffice to consider these gps now．
Recall：$|G|=p \Rightarrow G \cong C_{p}$ ．

$$
|G|=p^{2} \Rightarrow G \cong C_{p^{2}} \text { or } C_{p} \times C_{p}
$$

Q．How about $|G|=p^{3} \cdot p^{4} \ldots$
－prop 7.4.
If G is a finite abelian $p-g p$ that contains only 1 surge of order p Then G is cyclic．
挍习活说．if a finite abdian p－gp G is not cyclic． then G has at least 2 subgps of order p ．
proof：Suppose $G \neq\langle g\rangle$ ．
Then the quotient group $G /\langle g\rangle$ is a won－trivial $p-g p$ which contains an dement z of order p by Cauchy＇s Tho．
In particular $z \neq 1$
Consider the coset mop $\pi: G \rightarrow G /\langle g\rangle$
Let $x \in G$ satisfy $\pi(x)=z$

$$
\because \pi\left(x^{p}\right)=\pi(x)^{p}=z^{p}=1 \quad \therefore x^{p} \in\langle y\rangle
$$

Thus $x^{p}=y^{m}$ for some $m \in \mathbb{Z}$ ．
case 1：If ptm
$\because O(y)=p^{2}$ for some $r \in \mathbb{N}$ ．
\because By pop 2．11．$\quad o\left(y^{m}\right)=o(y)$
y is of maximal order
$\therefore o\left(x^{p}\right)<o(x) \leqslant o(y)=o\left(y^{m}\right)=O\left(x^{p}\right) \quad$ leads to contradiction．
case 2: If p / m. Let $m=p k . \quad(k \in \notin)$

$$
\therefore x^{p}=y^{m}=y^{p k}
$$

$\because G$ is abelian

$$
\therefore\left(x y^{-k}\right)^{k}=1
$$

$\therefore x y^{-k}$ belongs to the one and sully sunup of order p. Say H. The cyclic $g p<y\rangle$ contains a subggp of order p. which must be the one and only H.
$\therefore x y^{-k} \in\langle y\rangle$ which implies $x \in\langle y\rangle$.
$\therefore z=\pi(x)=1 . \quad$ contradiction.
So. $G=\langle y\rangle$
-prop 7.5
Let G be a finite abelian p-gp. C be a acdic sunup of maximal order. Then G contains a srobgp B. sit $G=C B \quad C \cap B=\{1\}$.
Thus by the 3.13, we have $G \cong C \times B$
proof:
If $|G|=p$. we take $G=C \quad B=\{1\}$ and the result follows.
Suppose that the result holds for all abetiongp of order p^{n-1} with $n \in \mathbb{N}$. $n \geqslant 2$. Consider $|G|=p^{n}$.
case) if $G=C$. then $\operatorname{ly} B=\{1\}$. the result follows
case if $G \neq C$. then G is not cyclic
By pap 7.4.
Since C is cydic. by The 2.12. It contains exactly one surge of order P. Thus there exist a surg D of G with $|D|=p . \quad D \notin C$.

$$
\therefore C \cap D=\{1\} .
$$

Consider coset map: $\pi: G \rightarrow G / D$.
If we consider π / C. the restriction of π on C.
then Kor $\pi / c=C \cap D=\left\{_{1}\right\}$.
Thus by list In tho. $\pi(C) \cong C$
Let y be a generator of the agcic $g p C$. ie. $C=\langle y\rangle$

$$
\because \pi(C) \cong C . \quad \pi(C)=\langle\pi(y)\rangle
$$

\therefore By the assumption on $(\pi C C)$ is a gydic gp of G / D of maximal order

$$
\because|G / D|=p^{n-1}
$$

\therefore by inductive hypothesis. G / D contains a sulbgp E sit. $G / D=\pi(C) E$ $\pi(C) \cap E=\{1\}$
Let $B=\pi^{-1}(E)$ ie $\pi(B)=E$
Claim l $G=C B$
proof: Note that E is a surgy containing $\{1\}$.
We have $\pi^{-1}(\{1\})=D \subseteq B$.

$$
\begin{aligned}
& \text { If } x \in G \quad \because \pi(C) \pi(B)=\pi(C) E=G / P \text {. } \\
& \therefore \exists u \in C \quad v \in B \quad \text { sit } \pi(x)=\pi(u) \pi(v) \\
& \because \pi\left(x u^{-1} v^{-1}\right)=1 \quad \therefore x u^{-1} v^{-1} \in D \subseteq B \\
& \because v \in B \quad \therefore x u^{-1} \in B
\end{aligned}
$$

$\because B$ is abelian $\therefore x=u x u^{-1} t C B$.
Claim 2: $C \cap B=\{1\}$
proof: Let $x \in C \cap B$.

$$
\text { Then } \begin{aligned}
\pi(x) & \in \pi(C) \cap \pi(B) \\
& =\pi(C) \cap E \\
& =\{1\}
\end{aligned}
$$

$$
\because \pi(x)=1 \text { in } C / D
$$

$$
\begin{aligned}
& \therefore x \in D \\
& \because x \in C \cap D=\{1\} \\
& \therefore x=1
\end{aligned}
$$

By Claims \& Claim 2. the result follows by induction.
-The 7.6
Let G be a finite abelian p-gp.
Then G is isomorphic to a distinct product of cydic gps.
prof: By prop 7.s. There exist a ydic $\mathrm{gp}_{\mathrm{p}} C_{1}$ a sungpp B, of G. s.t $G \cong C, \times B$,
$\because\left|B_{1}\right|||G|$ by Lagrange The.
$\therefore B_{1}$ B also a pogy.
\therefore If $B_{1} \neq\{1\}$ by prop 7.5. ヨ a acyclic gp C_{2} \& B_{2}. s.t $B_{1} \cong C_{2} \times B_{2}$
Continue in this way to get oydic gp G_{1}, \cdots, C_{k} until we get $B_{k}=\{1\}$ for some $\forall \in \mathbb{N}$. $\therefore G \cong G_{1} \times C_{2} \times \cdots \times L_{k}$.
-Thm7.1 Structure Thu of finite abelian gps.
If G is a finite abelian gp. Then $G \cong \mathbb{Z}_{p i} \times \ldots \times \mathbb{Z}_{p}{ }^{n_{p}}$ (p: not necessarily distinct) where $\mathbb{Z}_{p, i^{n i}}=\left(\mathbb{Z}_{p_{i} i_{i}},+\right) \cong C_{p, i_{i}}$ are cyclic gps of order $p_{i}^{n_{i}}(1 \leq i \leq k)$ The numbers $p_{i}{ }^{n_{i}}$ are uniquely determined up to their order.

- Th 7.8 Invariant Factor Decomposition of finite ablian gp.

Let G be finite abelian $g p$.
Then $G \cong \mathbb{Z}_{n} \times \cdots \times \mathbb{Z}_{n r}$ where $n_{i} \in \mathbb{N}(1 \leq i \leq r) \quad n_{1}>1 \quad n_{1}\left|n_{2}\right| \cdots \mid n_{r}$
ex．Consider an abelian gp G of order 48 ．

$$
\because 48=2^{4} \cdot 3 .
$$

\therefore by thm 7．3．G is 130 onorphic to $H \times \mathbb{Z}_{3}$ ．where $H 13$ an abelian $g p$ of order 2^{*} The options of H are $\mathbb{Z}_{2}{ }^{4}, \mathbb{Z}_{2}{ }^{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}^{2}, \mathbb{Z}_{2}{ }^{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
Thus we have $G \cong \mathbb{Z}_{4}^{+} \times \mathbb{Z}_{3} \cong \mathbb{Z}_{48}$

$$
\begin{aligned}
& G \cong \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{44} \\
& G \cong \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{3} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{12} \\
& G \cong \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{12} \\
& G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{U}_{6}
\end{aligned}
$$

判断 group of order n 是否 always abelian
看是否走 cydic $C_{n}=\left\langle g: g^{n}=1\right\rangle$
ep．$o(g)=39 \quad$ Not abelian
orber $=3 \mathrm{~m}$ subgp
$39=3 \times 13 \quad 13=3 \times 4+1 \in 3$ rd Sylow Thm可有 13 个或敒挽aydic
$0(g)=85$
abelian
$85=5 \times 17 \quad \operatorname{gcd} 15,17)=1$

8．Ring
8．1 Rings
－def Ring R
A set of R is a ring if it has 2 operations： $\operatorname{addrition}(t)$ \＆multiplication（．） st $(R,+)$ is an abelian gp．
(R, \cdot) satisfies closure associativity and identity properties of a gp ．
－Ring properties．
If R is a ring．Then $\forall a, b, c \in \mathbb{R}$ ．
1）$a+b \in R$
2）$a+b=b+a$
3）$a+(b+c)=(a+b)+c$
4）$\exists a \in \mathbb{R}$ ．sit $a+0=a=0+a(0$ ：zero of R ）
5）$\exists-a \in \mathbb{R}$ ．s．t $a+(-a)=0=(-a)+a \quad(-d$ ：negative of $a)$
7）$a(b c)=(a b) c$
8）$\exists \mid \in \mathbb{R}$ ．sit $a \cdot 1=a=1 \cdot a \quad \forall a \in \mathbb{R}$ ．（1：unity of \mathbb{R} ）
9）$a(b+c)=a b+a c \quad(b+c) a=b a+c a$
10）If $a b=b a$ ，Then R is commutative
ex． $\mathbb{Z}, \mathbb{Q} \mathbb{R} \mathbb{C}$ are concentrative ring with zero： 0 unity：
ex．For $n \in \mathbb{N}, n \geqslant 2 . M_{n} \mathbb{R}$ ）is a ring using matrix addition \＆multiplication zero：zero matrix \mathbb{D} identity matin x：I．
＊$i(R,$.$) is not a gp$
\therefore there is no left or right cancellation．
gp和nig不足色含关系
ep． $\ln \mathbb{Z}, 0 \cdot x=0 \cdot y \Rightarrow x=y$ ．
Given a ring R ，to distinguish the difference between multiples in addition \＆multiplication．
For $n \in \mathbb{N}, a \in \mathbb{R}$ ．

$$
\begin{aligned}
& \begin{aligned}
n a & =a+\cdots+a \quad(n\} a \text { 相乫) } \\
a^{n} & =a \cdots \cdots a
\end{aligned} \\
& \left.a^{n}=a \cdots \cdot . . a \text { (n个a才相 }\right)
\end{aligned}
$$

Recall: for a gp $G \cdot g \in G$. we have $g^{0}=1$ and $g^{\prime}=g$ and $\left(g^{-1}\right)^{-1}=g$
Thus for addition: $0 \cdot a=0 \quad 1 \cdot a=a \quad-(-a)=a$
For $n \in \mathbb{N}$. Define $(-n) a=(-a)+\cdots+(-a) \quad(n\}-a$ 相加) $a^{0}=1$
If the multiplication inverse of a exist. : $a^{-1} . \quad a a^{-1}=1=a^{-1} a$. define $a^{-n}=\left(a^{-1}\right)^{n}$

- prop 8.1

Let R be a ring $s \in R$.

1) If 0 is zero of R. then $0 \cdot r=r \cdot 0=0$
2) $(-r) s=r(-s)=-r s$
3) $(-r)(-s)=r s$
4) $\forall m, n \in \mathbb{Z},(m r)(n s)=(m n)(r s)$

- def. trivial ring.

A ring with only one element. In this case. unity of $1=0$.
If R is a ring with $R \neq\{0\}$. $\because r=r \cdot \mid \quad \forall r \in R$.
\therefore we have $1 \neq 0$. R wot trivial.
ex. R_{1}, \cdots, R_{n} be rings. We define componentuise operations on the poduct $R_{1} \times \cdots \times R_{n}$ as follows:

$$
\begin{aligned}
& \text { 1) }\left(r_{1}, \cdots, r_{n}\right)+\left(s_{1}, \cdots, s_{n}\right)=\left(r_{1}+s_{1}, \cdots, r_{n}+s_{n}\right) \\
& \text { 2) }\left(r_{1}, \cdots, r_{n}\right)\left(s_{1}, \cdots, s_{n}\right)=\left(r_{1} s_{1}, \cdots, r_{n} s_{n}\right)
\end{aligned}
$$

One can check $R_{1} \times \cdots \times R_{n}$ is a ring:
zero $\left(O_{p_{1}}, \ldots, O_{p_{n}}\right)=(0, \cdots, 0)$
unity $\left(\left.\right|_{R_{1}}, \cdots,\left.\right|_{R_{n}}\right)=\left(r_{1} s_{1}, \ldots, r_{n} s_{n}\right)$
The ring $R_{1} \times \cdots \times R_{n}$ are direct product of R_{1}, \cdots, R_{n}.

- def. characteristic of $R . \quad c h(R)$

If R is a sing, define characteristic of R. in terms of order of IR in additive $g p(R,+)$

$$
c h(R)=\left\{\begin{array}{lll}
n & \text { if } O(\mid R)=n \in \mathbb{N} & \text { in }(R,+) \\
0 & \text { if } O(\mid R)=\infty & \text { finite } g p \\
0(R,+) & \text { infinite } g p
\end{array}\right.
$$

For $k \in \mathbb{X}, \quad k \cdot R=0$ means $k r=0 \quad \forall r \in R$.
by prop 8.1. $k \cdot r=k\left(l_{R} \cdot r\right)=\left(k \cdot I_{R}\right) \cdot r$.
Thus $k R=0 \Leftrightarrow k \cdot 1_{2}=0$.

- prop 8.2

$$
\begin{array}{ll}
\text { 1) ch(} \mathbb{R})=n \in \mathbb{N} & \Rightarrow k R=0 \Leftrightarrow n \mid k \\
\text { 2) } c h(\mathbb{R})=0 & \Rightarrow k R=0 \Leftrightarrow k=0
\end{array}
$$

ex. $\mathbb{Z} \cdot Q \cdot \mathbb{R} \cdot \mathbb{C}$ has characteristic 0 .
For $n \in \mathbb{N}, n \geqslant 2$. ing \mathbb{Z}_{n} has characteristic n.
8.2 Subrings

- def. Subring

A subset S of a ring R is a subring if S is a ring itself with $I S=12$

* property (2) (3) (7) (9) of a ring automatically satisfy

Thus to show $S_{\text {is }}$ a subbing.

- Subring Test

1) $I_{R} \in S$
\Rightarrow If s.t $\in S$, then $s-t$, st are all in S.

* if 2 holds, then $0=s-s \in S \quad-t=0-t \in S$
ex. We have a chain of commutative rings

$$
\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C} .
$$

ex. If R is a ring. the center $z(G)$ of R is defined to be:

$$
\begin{aligned}
& \quad Z(G)=\{z \in R: Z r=r z \quad \forall r \in R\} \\
& * \mid R \in Z(R) \\
& * \text { If } s \cdot t \in Z(R) \text {. then for all } r \in R . \\
& (s-t) r=s r-t r=r s-r t=r(s-t) \\
& (s t) r=s(t r)=s(r t)=r(s t)
\end{aligned}
$$

By subring test. $Z(R)$ is a subbing of R.
ex. Let $\mathbb{Z}[c]=\left\{a+b i: a, b \in \mathbb{H} \quad i^{2}=-1\right\}$
Then one can show $\mathbb{Z}[i]$ is a subbing of \mathbb{C}. called the ring of Gamsion noteger
8.3 Ideas

Let R be a ring and A an additive subbyp of R.
$\because(R,+)$ is abelian

$$
\therefore A \triangleleft R .
$$

Thus we have additive quotient $g p$:
$R / A=\{r \in A: r \in R\}$ with $r+A=\{r+a: a \in A\}$

- prop 8.3

Let R be a ring and A an additive subgp of R.
For r.s $\in R$, we have

1) $r+A=s+A \Leftrightarrow r-s \in A$
2) $(r+A)+(s+A)=r+s+A$
3) $0+A=A \quad 0$: additive identity of R / A
4) $-(r+A)=(-r)+A \quad-A$: add itive inverse of $r+A$
5) $k(r+A)=k r+A \quad \forall k \in \mathbb{Z}$

Since R is a ring. it is notural to ask if we could make R / A to be a ring. A natural way to define multiplication in R / A is:

$$
\begin{equation*}
(r+A)(s+A)=r s+A \quad \forall r s \in R \tag{*}
\end{equation*}
$$

* We could have $r+A=r_{1}+A$. $s+A=s_{1}+A$ with $r \neq r_{1} \quad s \neq s_{1}$ Thus in order for $(*)$ to make sense, a necessary condition is:

$$
r+A=r_{1}+A \quad s+A=s_{1}+A \quad r s+A=r_{1} s_{1}+A
$$

In this case. $(r+A)(s+A)$ is well-defined

- prop 8.4

Let A be a additive subgp of a ring $R, a \in A$.
define $R_{a}=\{r a: r \in R\} \quad a R=\{a r: r \in R\}$
The following statements are equivalent:

1) $R_{a} \leq A \quad a R \leq A$ for every $a \in A$
2) For $r . s \in R$. the multiplication $(r+A)(s+A)=r s+A$. is well-dufined in R / A
proof: $1 D \Rightarrow 2)$ if $r+A=r_{1}+A \quad s+A=s_{1}+A$. We need to show $r s+A=r_{1} s_{1}+A$

$$
\begin{aligned}
\because\left(r-r_{1}\right) & \in A \quad\left(s-s_{1}\right) \in A \\
\therefore r s-r_{1} s_{1} & =r s-r_{1} s+r_{1} s-r_{1} s_{1} \\
& =\left(r-r_{1}\right) s+r_{1}\left(s-s_{1}\right) \quad \in\left(r-r_{1}\right) R+R\left(s-s_{1}\right) \subseteq A
\end{aligned}
$$

by prop $8.31 \mathrm{D} . r s+A=r_{1} s_{1}+A$.
2) $\Rightarrow 1)$ Let $r \in R . a \in A$.
by prop 8.111 .

$$
\begin{aligned}
r a+A & =(r+A)(a+A) \\
& =(r+A)(0+A) \\
& =0+A=A
\end{aligned}
$$

Thus $r a \in A . \quad R a \leq A$

- def. ideal.

An additive subgip A, of a $n i n g R$ is an ideal of R if $a R \leq A$ for every a.
Thus A of R is an ideal of $0 \in A \rightarrow$ additive subgp
For $a \cdot b \in A, r$ on R. We have $r a \operatorname{ar} \in A$. $a-b \in A$.
ex. If R is a riv. then $\{0\} \& P$ are ideal.
ex. let R be commutative ring $a_{1} \cdots a_{n} \in R_{3}$
Consider set I generated by $a_{1} \cdots a_{n}$ ie. $I=\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle=\left\{r_{1} a_{1}+\cdots+r_{n} a_{n}: r_{i} \in R\right\}$

Then I is ideal.
－prop 8.5
Let A be an idea of a ring R ．
If $\underline{\underline{R} \in A \text { ．then } A=R}$
proof：For every $r \in R$ ．
$\because A$ is an ideal． $\mathbb{R} \in A$
\therefore we have $r=r \cdot l_{p} \in \mathbb{A}$ ．
$R \subseteq A \subseteq R \quad$ Hence $R=A$ ．
－prop 8.6
Let A be an ideal of a ring R ．
Then the additive quotient $g p R / A$ is a ring with multiplication：

$$
(r+A)(s+A)=r s+A
$$

The unity of R / A is $1+A$ ．
－def．quotient ring
set of $r a=a r \in A$ ．
Let A be an ideal of a ring R ．
The ring R / A is a quotient ring of R by A ．
－def．principal ideal generated by a
Let R be a commutative ring．A be an ideal of R ．
If $A=a R=\{a r: r \in R\}=R a$ ．for some $a \in R$ ．
Then A is a principal ideal generated by a 龺作 $A=\langle a\rangle$ （additive）$n \cdot a=1$
－pop 8．7．
All ideas of \mathbb{Z} are of the form $\langle a\rangle$ for some $n \in \mathbb{Z}$ ．
If $\langle n\rangle \neq\langle 0\rangle, n \in \mathbb{N}$ ．Then the generator is uniquely determined．
po rf：
Let A be an ideal of \mathbb{Z} ．
if $A=\{0\}$ ．Then $A=\langle 0\rangle$ ．
－If $A \neq\{0\}$ ．choose $a \in \mathbb{A}$ ，with $a \neq 0$ ．and $|a|$ minimum Clearly．$\langle a\rangle \leq A$ ．
To prove another inclusion．let $b \in A$ ．
By the division algorithm，we have $b=$ qa tr $q r \in \mathbb{Z} . \quad 0 \leq r<|a|$ if $r \neq 0$ ．

$$
\because A \text { is an idea } a, b \in A
$$

$r=b-q a \in A . \quad|r|<|a|$ contradicts property of $|a|$
So $r=0, b=q a$ i．e．$b \in\langle a\rangle$ which follows $A=\langle a\rangle$ ．
$\langle-2\rangle$ 和 $\langle 2\rangle$ 足一个东西
假没 $A=\langle a\rangle=\left\langle a_{1}\right\rangle$
let $a, \in A$, sot，$\angle a_{r}>=A$
then $a=q, a$ for some $q, \in \mathbb{Z}$
$a_{1}=q a$ for some $q \in \mathbb{Z}$
thus we have $a_{1} a_{1}$ and a_{1} / a_{1} ． thus $a=a$ ，
8.4 Isomorphism Thus.

- def. ring homomorphism.

Let R \& S be rings.
mapping $\theta: R \rightarrow S$ is a ring homomorphism if $\forall a \cdot b \in R$:

$$
\begin{aligned}
& \text { 1) } \theta(a+b)=\theta(a)+\theta(b) \\
& \text { 2) } \theta(a b)=\theta(b a) \\
& \text { 3) } \theta\left(\left.\right|_{p}\right)=1 s
\end{aligned}
$$

ex. The mapping $k \rightarrow[k]$ for \mathbb{Z} to \mathbb{Z}_{n} is an onto ring $H M$ ex. If $R_{1} \& R_{2}$ be rings.
the projection $\pi_{1}: R_{1} \times R_{2} \rightarrow R_{1}$ defined by $\pi_{1}\left(r_{1} r_{2}\right)=r_{1}$ is an onto ring $H M$. $\pi_{2}: R_{1} \times R_{2} \rightarrow R_{2}$ defined by $\pi_{1}\left(r_{1} r_{2}\right)=r_{1}$ is an onto ring $H M$.

- prop 8.8

Let $\theta: R \rightarrow R$ is a ring HM and $r \in R$. Then

$$
\text { 1) } \theta\left(O_{R}\right)=O_{s}
$$

2) $\theta(-r)=-\theta(r)$
3) $\theta(k r)=k \theta(r) \quad \forall k \in \mathbb{Z}$.
4) $\theta\left(r^{n}\right)=\theta(r)^{n} \quad \forall n \in \mathbb{N} \cup\{0\}$. non-negotive
5) of $n \in R^{n}$ (set of elements of R which has a multiplicative inverse)

Then $\theta\left(u^{k}\right)=\theta(n)^{k} \quad \forall k \in \underset{\Sigma}{\mathbb{Z}}$. unit of R

- def. ring isomorphism.

A mopping of rings $\theta: R \rightarrow S$ is a ring isomorphism of θ is a homomorphism and θ is bijective.
$R \& S$ are 130 morphic. 汽作 $R \cong S$.
－def．Kernel \＆image
Let $\theta: R \rightarrow S$ ．be a ring $H M$ ．
The kernel of θ is defined by $\operatorname{ker} \theta=\{r \in R: \theta(r)=0\} \subseteq R$ ．
The image $f \theta$ is defined by in $\theta=\theta(R)=\{\theta(r): r \in R\} \leqslant S$ ．
\longrightarrow subring
Group theorey 中， $\operatorname{Ker} \theta$ \＆in θ 柺别定 additive subggs of R \＆S \downarrow 由此引出

- prop 8．9．＊

Let $v: R \rightarrow S$ be a ring $H M$ ．Then
1）in v is a subring of S
$2) \operatorname{Ker} \theta$ is an ideal of R ．
prof：
1）$\because \ln \theta=\theta(R)$ is an additive sulggs of s ．
$\therefore \theta(R)$ is closed under multiplication

$$
\begin{aligned}
& \quad 1 s \in \theta(R) \rightarrow 1 s=\theta(\mid R) \in \theta(R) \\
& \text { if } s_{1}=\theta\left(r_{1}\right) s_{2}=\theta\left(r_{2}\right) \text { are in } \theta(R) \text {, then } s_{1} s_{2}=\theta\left(r_{1}\right) \theta\left(r_{2}\right)=\theta\left(r_{1} r_{2}\right) \in \theta(R) \\
& \therefore \operatorname{in} \theta \text { is a subring of } s
\end{aligned}
$$

2）$\because \operatorname{Ker} \theta$ is an additive surge of P
$\therefore r a$ ar $\in \operatorname{Ker} \theta$ for all $r \in R$ ．$a \in \operatorname{Ker} \theta$ ．
If $r \in R \quad a \in \operatorname{Ker} \theta$ ．then $\theta(r a)=\theta(r) \theta(a)=\theta(r) \cdot 0=0$ Thus $r a \in \operatorname{Ker} \theta$ ．同理 $a r \in \operatorname{Ker} \theta$
Thus $k e r \theta$ is an ideal of R ．

- Thm 8.10 (lst IM Thm.)

Let $\theta: R \rightarrow S$ be a ring $H M$.
We have $R / \operatorname{ker} \theta \cong \operatorname{im} \theta$.
proof: Let $A=\operatorname{Ker} \theta$.
$\because A$ is an robeal of $R \therefore P / A$ is a ring.
Refine the ing map $\bar{\theta}: R / A \rightarrow \min \theta \cdot \bar{\theta}(r+A)=\theta(r) \quad \forall r+A=R / A$

$$
\begin{aligned}
& r+A=s+A . \\
\Rightarrow & r-s \in A \quad \Rightarrow \quad \theta(r-s)=0 \quad \Rightarrow \quad \theta(r)=\theta(s)
\end{aligned}
$$

$\therefore \bar{\theta}$ is well-defined and $1-1$
$\therefore \bar{\theta}$ is dearly onto. $\bar{\theta}$ is a ring HM
$\therefore \bar{\theta}$ is a ring $I M$ and $R / \operatorname{Ker} \theta \cong \operatorname{im} \theta$.
-prop 8.11.
Let R be a ning. $A \cdot B$ be subsuts of R.

1) If $A \& B$ be 2 subrings of R. $I A=I_{B}=I_{R}$.

Then $A \cap B$ is a subring of R.
2) If A is a subring. B is an ideal of R.

Then $A+B$ is a subring of R.
3) If A \& B be ideots of R, then $A+B$ is an ideol of R.

- Thm 8.12 (2nd IM Thm)

Let A be a subring. B be a_{n} ided of a ring R.
Then $A+B$ is a subring of $B . \quad B$ is an ided of $A+B$. $A \cap B$ is an ideal of $A . \quad(A+B) / B \cong A / A \cap B$
-The 8.13 (End IM Thu)
Let A \& B be ideals of a ring with $A \subseteq B$.
Then B / A is an idea of R / A and $(R / A) /(B / A) \cong R / B$.

$$
\forall z: n \mid z
$$

$$
\begin{aligned}
\operatorname{gcd}(m, n)=1 \Rightarrow \begin{cases}x \equiv b(\bmod m) & x \in \mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z} \\
x \equiv c(\bmod n) & x \in \mathbb{Z}_{m}=\mathbb{Z} / m \cdot \mathbb{d}\end{cases} \\
\text { - Thm 8.14. CRT. } \quad \because \operatorname{gcd}(m, n)=1 \\
\Rightarrow b_{y} 8.14 x \in \mathbb{Z}_{m n .} \text { ring ideal }
\end{aligned}
$$

Let $A \cdot B$ be ideals of R.
\Rightarrow by $8.14 x \in z_{\text {rm. }}$. ring ideal $\langle n\rangle$ $\langle m\rangle$

1) If $A+B=R$. then $R /(A \cap B) \cong R / A \times R / B$.
) If $A+B=R \quad A \cap B=\{0\}$. Then $R \cong R / A \times R / B$.
proof: (2) is a direct consequence of (1)
Thus it suffices to prove (1)
Define $\theta: R \rightarrow R / A \times R / B$. by $\theta(r)=(r+A, r+B)$ for all $r \in R$.
Then θ is a ring $H M$.
To show of is onto. Let $(s+A, r+B) \in R / A \times R / B$ sit $\in R$.

$$
\because A+B=R
$$

$\therefore \exists a \in A \quad b \in B$ sit $a+b=1$
Let $y=s b+t a$.
Then $s-r=s-s b-t a=s(1-b)-t a=(s-t) a \in \mathcal{A}$.
Thus $s+A=r+A$
同理 $\theta(r)=(r+A, r+B)=(s+A, t+B)$

$$
\begin{aligned}
& \therefore \operatorname{im} \theta=R / A \times R / B \\
& \because \operatorname{Ker} \theta=A \cap B
\end{aligned}
$$

\therefore by 1 st $I M$ the. $\quad R / A \cap B) \cong R / A \times R / B$.

Let $m, n \in \mathbb{N}$ ．ged $(m, n)=1$ ．
By Eudid Lemma． $1=m r+n s$ ．for some $r, s \in \mathbb{Z}$
Then $16 m \mathbb{Z}+n \mathbb{Z} . m \mathbb{Z}+n \mathbb{Z}=\mathbb{Z}$ ．
$\because \operatorname{gcd}(m, n)=1 \quad \therefore m \mathbb{Z} \cap n \mathbb{Z}=m n \mathbb{Z}$
By CRT，we have：
－ $\operatorname{Cor} 8.15$
1）If $m, n \in \mathbb{N} . \operatorname{gcd}(m, n)=1$ ．Then $\mathbb{Z}_{m n}=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$
2）If $m, n \in \mathbb{N} \quad m, n \geqslant 2 . \operatorname{gcd}(m, n)=1$
Then $\varphi(m, n)=\varphi(m) \varphi(n) . \quad \varphi(m)=\underset{\hookrightarrow \text { Euler }}{\left|\mathbb{Z}_{m}^{*}\right|}$
$\phi(m)=\#\{a: 1 \leq a \leq m . \operatorname{gcd}(a, m)=1\}$
Phi function formula：© $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$
（2）$\phi(m n)=\phi(m) \phi(n)$
$F(n)=\phi\left(d_{1}\right)+\cdots+\phi\left(d_{r}\right)=n \quad\left(d_{1} \cdots d_{n}\right.$ 是 n in 因数）
＊Let $m, n \in \mathbb{Z}$ ．ged $(m, n)=1$ ．
For $a \cdot b \in \mathbb{Z}$ ．By Cor 8．14．for $[a] \in \mathbb{Z} m[b] \in \mathbb{Z}_{n}$ ． $\exists[c] \in \mathbb{Z}_{m n}$ s．t $[c]=[a]$ in $\mathbb{Z}_{m} . \quad[c]=[b]$ in \mathbb{Z}_{n} ．
$\Rightarrow x \equiv a(\bmod (u) x \equiv b(\bmod u)$ has unique solution of the form $x \equiv c(\bmod \operatorname{mn})$
－prop 8．16
If R is a ring． $\mathbb{R} \mathbb{=}=p$（ptprime）．Then $R \cong \mathbb{Z}_{p}$
proof：Define $\theta: \mathbb{Z}_{p} \rightarrow R . \quad \theta([k])=\left.k \cdot\right|_{R}$
$\because R$ is an additive gp $|\mathbb{R}|=p$
\therefore By Lagrange than．$O\left(\left.\right|_{R}\right)=1$

$$
\begin{aligned}
\because \mathbb{1}_{R} \neq 0 \quad o\left(\mathbb{1}_{R}\right) & =p . \\
\therefore[k]=[m] & \Leftrightarrow p \mid k-m \\
& \Leftrightarrow|k-m| \cdot \mathbb{1}_{R}=0 \\
& \Leftrightarrow k \cdot \mathbb{1}_{R}=m \cdot \mathbb{1}_{R}
\end{aligned}
$$

Thus, θ well-defined and one-to-one
Also, θ is ring HM

$$
\begin{aligned}
& \because\left|\mathbb{Z}_{p}\right|=p=|R| \quad \theta \text { is one-to-one } \\
& \therefore \theta \text { is onto }
\end{aligned}
$$

Thus $\mathbb{Z}_{p} \cong R$.

9．Commutative Ring
9．1 Integral domain \＆Fields
－Unit
$\backsim \& u^{-1}$ 都在 2 中
Let R be a ring．
$u \in R$ be a unit if u has a multiplicative inverse in R, u^{-1}
－$n u^{-1}=1=u^{-1} u$ ．
－If n is a unit in $R, \quad r . s \in R . \quad u r=u s \Leftrightarrow r=s$ Let R^{*} denote the set of all units in R ． $\left(R^{*}, \cdot\right)$ is a gp．\rightarrow 莋 group of units of R ． $* 2$ is a unit in Q ．but not a unit in \mathbb{Z} ．
－division ring．除。外 酐 dement u 都有 u^{-1}
A ring $R \neq\{0\}$ is a division ring if $R^{*}=R \backslash\{0\}$ ie every non－sero element of R is a unit in R ． \＃A commutative division R ing is a field．
ex． $\mathbb{Q} ; \mathbb{R} ; \mathbb{C}$ are fields． \mathbb{Z} is wit a field．
ex．$[a][x]=[1]$ has solution in $\mathbb{Z} \Leftrightarrow \operatorname{gcd}(a, n)=1$
Thus if $n=p$ ，is a prime，then $\operatorname{gcd}(a, p)=1$ for all $a t\{1,2, \cdots, p-1\}$
Thus $\mathbb{Z}_{p}^{*}=\mathbb{Z}_{p} \backslash\{0\} \quad \mathbb{Z}_{p}$ is a field．
However，if n is not a prime，$\exists a \cdot b, a b=n \quad 1<a \leq b<n$
Then，the won－zero congruence class $[a][b]$ are not units in \mathbb{Z}_{n} ．
Since there is no sol st．$[a][x]=[1]$ ．Hence， $\mathbb{Z}_{n}^{*} \neq \mathbb{Z} \backslash\{0\}$
Thus， \mathbb{Z}_{n} is a field $\Leftrightarrow n$ is prime
＊If R is a dinsion ring or field，then its only ideal are $\{0\}$ or R ．
－Wedderburns Little Theorem
Finite division ring is a field．
－Zero divisor
Let $R \neq\{0\}$ be a ring．For $0 \neq a \in R$ ．
a is a zero divisor if $\exists 0 \neq b \in R$ ．sit $\underline{\underline{a b}=0}$
ep．$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is a zero divisor in $M_{2}(\mathbb{R})$
在 Matrix 中，所有RREFT化或 Identity matrix 的都没 2 er divisor．
－prop 9.1
Given a ring R ，TFAE：
1）If $a b=0$ in R ，then $a=0$ or $b=0$
2）If $a b=a c$ in,$a \neq 0$ ．then $b=c$ ．
3）If $b a=c a$ in $R . \quad a \neq 0$ then $b=c$
proof：
1）$\Rightarrow 2$ L Let $a b=a c \quad a \neq 0 . \quad \Rightarrow a(b-c)=0$ ．

$$
\because a \neq 0 \quad \therefore b=c
$$

2）$\Rightarrow 1)$ Let $a b=0$ in R．
case 1：$a=0$ we are done
case 2：$a b=0=a \cdot 0 \Rightarrow b=0$ done
1）$\Leftrightarrow 33$ 同理
－integral domain
A commentative riv $R \neq\{0\}$ is integral domain if it has no zero division i．e．$a b=0 \Rightarrow a=0$ or $b=0$
ex．If p is a prime，then $p l a b$
\Rightarrow play or $p \mid b$ ．
i．e $[a][b]=[0]$ in $\mathbb{Z}_{p} \Rightarrow[a]=0$ or $[b]=0$
Thus \mathbb{Z}_{p} is an integral domain．
However，$n=a b(1<a, b<n) \Rightarrow[a][b]=[0] \quad([a] \neq[0][b] \neq[0])$
Thus \mathbb{Z}_{n} is an integral domain $\Leftrightarrow n$ is prime
－prop $9.2 \rightarrow$ commutative division rig $\quad n u^{-1}=1$
Every field is an integral domain．$\longrightarrow a b=0 \Rightarrow a=0$ or $b=0$
proof．Let $a b=0$ in a field R ．
We want to show $a=0$ or $b=0$
case 1：If $a=0$ ，then we are done．
case 2：If $a \neq 0$ then $a^{-1} a b=b=a^{-1} \cdot 0 \Rightarrow b=0$
Thus，P is an integral domain
＊1）Using the proof of 9．2．We can show that every subbing of a field in an integral domain
2）The converse of prop 9.2 is not time． ep． \mathbb{Z} is an ID，but not a field．
ex．The Gaussian ring $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$ $\because(\mathbb{Z}[i])^{*}=\{ \pm 1, \pm i\} \mathbb{Z}[i]$ is not a field．
－prop 9.3
Every finite integral domain is a field．
＊infinite 不－定仚 field ep． $\mathbb{Z} \cdot G L_{n}$（R $\rightarrow n \times n \cdot \operatorname{det} \neq 0$
proof：Let R be an ID．$a \in R \quad a \neq 0$
Consider the map $\theta: R \rightarrow R$ defined $\operatorname{Ly} \theta(r)=$ ar
$\because R$ is an I．D．areas $a \neq 0$
$\therefore r=5 . \quad \therefore \theta$ is infective．
In particular，$\exists b \in R$ sit $a b=1$ ．
$\because R$ is commutative．
$\therefore a b=1=b a$ ie a is a unit
$\therefore R_{13}$ a field
－prop 9.4
The characteristic of any integral domain is either or a prime p ． proof：Let R be an I．D．

1）If $c h(R)=0$ ．Then we are dine．
\Rightarrow If $c h(R)=n \in \mathbb{N}$
prove by contradiction：Suppose n is not a prime $n=a b$ ．
If 1 is the unity of R ，then by prop 8．1．$\quad(1=a, b<n)$
$(a \cdot 1)(b \cdot 1)=(a b)(1 \cdot 1)=n \cdot 1=0$
$\because R$ is an ID．
$\therefore a^{\prime} 1=0$ or $b \cdot 1=0$ which leads to a contradiction $\sin 0$ O $O(1)=n$ ．
$\therefore n$ is a prince．
＊Let R be an ID with $h(R)=p$ ．a prime
昜聅 order 都 divides p ．
For $a, b \in R$ ．we have $(a+b)^{p}=a^{p}+\binom{p}{1} a^{p-1} b+\cdots+\left(\begin{array}{l}p-1\end{array}\right) a b^{p-1}+b^{p}$
$\because p$ is a prime $p \left\lvert\,\binom{ p}{i}\right.$ for all $1 \leq i \leq(p-1)$
$\because h(R)=p \quad \therefore(a+b)^{p}=a^{p}+b^{p} \quad \otimes \frac{p!}{i!(p-i)!}$
9.2 Prime ideals \＆Maximal Ideals
－def．prime ideal
Let R be a commutative ring $a b=b a$
An ioleal $P \neq R$ of R is a prime idea
if every r．s $\in R$ satisfy $r \in P$ ．Then $r \in P$ or $s \in P$
＊Let ρ be a primo．$a \cdot b \in \mathbb{Z}$ ．
Then $p|a b . \Rightarrow p| a$ or $p \mid b$
相垱于 $a b \in p \mathbb{Z} \Rightarrow a \in p \mathbb{Z} \quad b \in \mathbb{Z} \rightarrow$ prime ided
ex．$\{0\}$ is a prime ideal of $x \quad a b=0 \Rightarrow a=0 \quad b=0$
ex．For $n \in \mathbb{N}, n \geqslant 2$ ．
$n \mathbb{Z}$ is a prime ideal of $\mathbb{Z} \Leftrightarrow n$ is a prime
－prop 9.5
If R is commutative ring，$\quad v=S \gamma \in R$
then an ideal p of R is a prime ideal $\Leftrightarrow R / P$ is int domain
prot：$R \& R / P>$ are commutative n ing

$$
\begin{aligned}
R / P \neq\{0\} & \Leftrightarrow 0+P \neq 1+P \quad \longrightarrow \text { unity } \perp \notin P . \\
& \Leftrightarrow 1 \notin P \\
& \Leftrightarrow P \neq R . \quad R \notin R \cdot \perp \notin P .
\end{aligned}
$$

Also，for r．s $\in R$ ，we hare：
P is a prime od $\Leftrightarrow r s \in P \Rightarrow r \in P$ or $s \in P$

$$
\Leftrightarrow(r+p)(s+p)=0+p \Rightarrow r+p=0+p \text { or } s+p=0+p
$$

$\Leftrightarrow R / P$ is int domain

- maximal ideal

Let R be a commutative ring.
A_{n} ideal $\underline{M \neq R}$ of R is a maximal ideal if whenever A is an idea. s.t. $M \subseteq A \leq R$. then $A=M$ or $A=R$.
ex. If $r \notin M$, then the idled $\langle r\rangle+M=R$. if M is maximal ex. \mathbb{Z}_{10} in maximum ideal: $\mathbb{Z}_{2}, \mathbb{Z}_{5}$

- prop 9.6

If R is a commutative ring, then an ideal M of R is a maximal ideal $\Leftrightarrow R / M$ is a field
proof: if \& R / M is a commutative ni y,

$$
\begin{aligned}
\therefore R / M \neq\{0\} & \Leftrightarrow 0+M \neq 1+M \\
& \Leftrightarrow 1 \notin M \\
& \Leftrightarrow M \neq R .
\end{aligned}
$$

$\max \&$ prime ,deal: $M \neq R$
Also for $r \in R$, woke that $r \notin M \Leftrightarrow r+M \neq 0+M$
M is a maxinal ideal
$\Leftrightarrow \quad\langle r\rangle+M=R$ for any $r \notin M$
$\Leftrightarrow \quad 1 \in\langle r\rangle+M$ for any $r \notin M$
\Leftrightarrow for any $r \notin M, \exists r+M \in R / M$ sit $(r+M)(s+M)=H M$
$\Leftrightarrow R / M$ is a field.
$-\cos 9.7$
(洗合9.2, 9.5.9.6)
Every maximal idea of a commutative ritzy is a prime idea.

* The converse of cor 9.7 is not time
ap. in $\mathbb{Z}\{0\}$ is a prime ideal. bit not a maximal idled.
ex. Consider the ideal $\left(x^{2}+1\right)$ in the ring $\mathbb{Z}[x]$
The map $v: \mathbb{Z}[x] \rightarrow \mathbb{Z}[i]$ defined by:
$\theta(f(x))=f(i)$ is surjective since $\theta(a+b x)=a+b i$
Also $\operatorname{ker} \theta=\left\langle x^{2}+1\right\rangle$.
By last IM the. $\mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle \cong \mathbb{Z}[i]$
$\because \mathbb{Z}[-i]$ is an ID - but wot a field.
\therefore the idea $\left\langle x^{2}+1\right\rangle$ is a prince. but not maximal.

prime ideal: 是 int domain $a b=0 \Rightarrow a=0$ or $b=0$
9.3 Fields of Fractions

We recall that every subbing of a field is an ID
The "converse" also hold. every integral domain R is isomorphic to a subring of a field F.

Let R be an ID. $D=R \backslash\{0\}$.
Consider the set $X=R \times D=\{(r, s): r \in R . s \in D\}$.
We say $(r, s) \equiv\left(r_{1}, s_{1}\right)$ on $X \Leftrightarrow r s_{1}=r_{1} s$
In particular i) $(r, s) \equiv(r, s)$

$$
\begin{aligned}
& \text { 2) } \begin{array}{l}
(r, s) \equiv\left(r_{1}, s_{1}\right) \quad \Rightarrow\left(r_{1}, s_{1}\right) \equiv(r, s) \\
\text { 3) }\left\{\begin{array}{l}
(r, s) \equiv\left(r_{1}, s_{1}\right) \\
\left(r_{1}, s_{1}\right) \equiv\left(r_{2}, s_{2}\right)
\end{array} \Rightarrow(r, s) \equiv\left(r_{2}, s_{2}\right)\right.
\end{array}
\end{aligned}
$$

- fraction $\frac{r}{s}$

Motivated by the case $R=\mathbb{Z}$. We define the fraction $\frac{r}{s}$ to be the equivalence class $[(r, s)]$ of the pair $(r, s) \in X$

Let F denote the set of all these fractions. ie

$$
F=\left\{\frac{r}{s}: r \in R \quad s \in D\right\}=\left\{\frac{r}{s}: r \cdot s \in R \quad s \neq 0\right\}
$$

- addition \& unttiplication of f

$$
\begin{aligned}
& \frac{r}{s}+\frac{r_{1}}{s_{1}}=\frac{r s_{1}+r_{1} s}{s s_{1}} \\
& \frac{r}{s} \cdot \frac{r}{s_{1}}=\frac{r r_{1}}{s s_{1}}
\end{aligned}
$$

$\left(s s_{1}, r s_{1}+r_{1} s, r r_{1}\right.$ are elements of $\left.R\right)$

- Thu 9.8.

Let R be an ID.
Then \exists a field F consisting of fractions $\frac{r}{s}$. with r.s $\in R$. $s \neq 0$. By identifying $r=\frac{r}{1}$ for all $r \in R$.
proof:
Note that $s s_{1} \neq 0$. (Since R is an ID and thus these operations are well-defined.
Then one can show :
F becomes a field with the zee being \div. unity being T. Negation $\frac{r}{s}$ is $\frac{-r}{s}$.
Moreover, if $\frac{r}{s} \neq 0$ in F, then $r \neq 0 . \Rightarrow \frac{s}{r} \in F$.
Then we have $\frac{r}{s} \cdot \frac{s}{r}=\frac{r s}{s r}=1 \in F$ In addition, we have $R \cong R^{\prime}, R^{\prime}=\left\{\frac{r}{1}: r \in R\right\} \subseteq F$
10. Polynomial Rings
10.1. Polynomials

- Polynomial in x over R

Let R be a ring. and x be a variable.

$$
R[x]=\left\{f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}: m \in \mathbb{N} \cup\{0\} \quad a_{:} \in R(0 \leq i \leq m)\right\}
$$

Such $f(x)$ is polynomial in x over R.

$$
* f(x)=0 \Rightarrow a_{0}=\cdots=0 . \quad * \operatorname{deg} 0=-\infty
$$

- Addition \& multiplication on $R[x]$

Let $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in R[x]$
$g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x]$ with $m \leq n$.
Then we wite $a_{i}=0$ for $m+1 \leq i \leq n$.
Addition on $R[x]: f(x)+g(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}$
Multiplication on $R[x]: f(x) \cdot g(x)=\left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right)\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)$

$$
\begin{aligned}
& =a_{0}+b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x+\cdots+a_{m} b_{n} x^{n+m} \\
& =c_{0}+c_{1} x+\cdots+c_{m+n} x^{m+n} \quad c_{i}=\sum_{k=0}^{i} a_{k} b_{i-k}
\end{aligned}
$$

- prop 10.1

Let R be a ring and x be variable

1) $R[x]$ is a ring
2) R is a subring of $R[x]$.
3) if $Z=Z(R)$ denote the center of R, then $Z(R[x])=Z[x]$
proof: 3) Let $f(x)=\sum_{i=0}^{m} a_{i} x^{i} \in \mathbb{Z}[x] \quad g(x)=\sum_{i=0}^{n} b_{i} x^{i} \in R[x]$

$$
\begin{aligned}
& f(x) g(x)=c_{0}+c_{1} x+\cdots+c_{m+n} x^{m+n} \quad c_{i}=\sum_{k=0}^{i} a_{k} b_{i-k} . \\
& \because a_{i} \in Z . \quad \therefore a_{i} b_{j}=b_{j} a_{i} \quad \forall i j .
\end{aligned}
$$

$$
\therefore f(x) g(x)=g(x) f(x) \quad z[x] \subseteq z(R[x]) .
$$

To show the other inclusion, if $f(x)=\sum_{i=0}^{m} a_{i} x^{i} \in Z(R[x])$ then $f(x) \cdot b=b \cdot f(x) \quad \forall b \in R$.

$$
\begin{aligned}
& \Rightarrow a_{i} b=b a_{i} \quad 0 \leqslant i \leqslant m \\
& \Rightarrow a_{i} \in z \cdot \quad z(R[x]) \subseteq z[x] \\
& \Rightarrow z(R[x])=z[x]
\end{aligned}
$$

-prop 10.2
Let R be an ID. Then

1) $R[x]$ is an ID.
2) If $f \neq 0, g \neq 0$ in $R[x]$. Then $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$
3) The units in $R[x]$ are R^{*}. the units in R.
proof: 2) Suppose $f(x) \neq 0 g(x) \neq 0$ are polynomial in $R[x]$.

$$
f^{\prime}(x)=a_{0}+\cdots+a_{m} x^{m} \quad g(x)=b_{0}+\cdots+b_{n} x^{n} . \quad a_{m} \neq 0 \neq b_{n}
$$

Then $f g(x)=\left(a_{m} b_{n}\right) x^{m+n}+\cdots+a_{0} b_{0}$.
$\because R$ is an ID. $a_{m} b_{n} \neq 0 \quad f(x) g(x) \neq 0$.
$\therefore R[x]$ is an ID.

$$
\therefore \operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

3) Let $u(x) \in R[x]$ be a unit with the inverse $v(x)$

$$
\begin{aligned}
& \because u(x) \cdot v(x)=1 \quad \therefore \operatorname{deg} u+\operatorname{deg} v=0 \quad u(x) \neq 0 \quad v(x) \neq 0 \\
& \because \operatorname{dg} u \geqslant 0 \quad \operatorname{deg} v \geqslant 0 \\
& \therefore \operatorname{deg} u=0=\operatorname{deg} v .
\end{aligned}
$$

Thus $u(x), v(x)$ are units in $R,(R[x])^{*}=R^{x}$
$*$ In $\mathbb{Z}_{4}[x] . \quad 2 x \cdot 2 x=4 x^{2}=0$.
Thus $\operatorname{deg}(2 x)+\operatorname{deg}(2 x) \neq \operatorname{deg}(2 x \cdot 2 x)$
\therefore The product formula in prop 10.2 only applies when R is an ID.

* To extend. the product formula in prop 10.2 to 0 .

We define dy $(0)= \pm \infty$.
10.2 Polynomial over a field.

- def. divides

Let f be a field. $f(x) . g(x) \in F(x)$
$f(x)$ divides $g(x)$ if there exists $q(x) \in F[x]$ sit $g(x)=q(x) \cdot f(x)$记作 $f(x) \mid g(x)$

- prop 10.3

Let F be a field. $\quad f(x) \cdot g(x) \cdot h(x) \in F[x]$

1) $f(x)|g(x) \cdot g(x)| h(x) \Rightarrow f(x) \mid h(x)$
v) $f(x)|g(x) \cdot f(x)| h(x) \Rightarrow f(x) \mid(g u+h v)(x)$ for $n(x) \cdot v(x) \in F[x]$
-prop 10.4
Let F be a field. $f(x), g(x) \in F[x]$ be manic polynomids.

$$
f|g \wedge g| f \Rightarrow f(x)=g(x)
$$

proof: $\because f(x)|g(x) g| f$.

$$
\begin{aligned}
& \therefore g(x)=r(x) f(x) \quad f(x)=s(x) g(x) \quad \text { for } \operatorname{s.r} \in F[x] . \\
& \therefore f=s g=\operatorname{sr} f .
\end{aligned}
$$

By prop 10.2. $\operatorname{deg} f=\operatorname{deg} s+\operatorname{deg} r+\operatorname{deg} f . \Rightarrow \operatorname{deg} s+\operatorname{deg} r=0$ $\therefore f(x)=s g(x)$ for some $s t F$
\because both $f \& g$ are manic

$$
\therefore s=1 \quad \Rightarrow \quad f=g
$$

$$
\text { * for } a \cdot b \in \mathbb{Z}^{+} \text {if } a|b . \quad b| a . \Rightarrow a=b
$$

\rightarrow The set of manic polynomials in $F[x]$ plays the same role as the sot of positive integers in \mathbb{Z}.
－Division algorithm．
Let \mathbb{F} be a field．$f(x) . g(x) \in \mathbb{F}(x)$ with $f(x) \neq 0$ ．
Then there exist unique $q(x) . r(x) \in \mathbb{F}[x]$ s．t．

$$
g(x)=q(x) f(x)+r(x) \quad \text { with } \operatorname{deg} r<\operatorname{deg} f .
$$

＊this includes the case for $v=0$ ．（ 1 同时解释 $\operatorname{deg} \nu=-\infty$ ）
proof：\rightarrow Prove $q(x) \cdot r(x)$ exist
Prove by induction：
let $m=\operatorname{doy} n=\operatorname{deg} g$
If $n<m$ ．then $g(x)=0 \quad f(x)+g(x)$
Suppose $n \geq m$ ．and this holds for all $g(x) \in \mathbb{F}[x]$ ．with dey $g<n$ ．
Write $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \quad a_{m} \neq 0$ ．

$$
g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}
$$

$\because \mathbb{F}$ is a field $a_{m}{ }^{-1}$ exists

$$
\begin{aligned}
\therefore g(x) & =g(x)-b_{n} a_{m}-1 x^{n-m} f(x) \\
& =\left(b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}\right)-b_{n} a_{m}^{-1} x^{n-m}\left(a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}\right) \\
& =0 x^{n}+\left(b_{n-1}-b_{n} a_{m}^{-1} a_{m-1}\right) x^{n-1}+\cdots
\end{aligned}
$$

$\because \operatorname{deg} g_{1}<n . \therefore$ By induction．$\exists q_{1}(x) \quad r_{1}(x) \in \mathbb{F}[x]$ ．s．t．$g_{1}(x)=q_{1}(x) f(x)+r_{1}(x)$
\rightarrow Prove uniqueness．
Suppose we have $g(x)=q_{1}(x) f(x)+r_{1}(x)$ with $\operatorname{dog} r_{1}<d$ dy f ．
Then $r(x)-r_{1}(x)=\left(q_{1}(x)-q(x)\right) f(x)$
If $q_{1}(x)-q(x) \neq 0$ ．Then：

$$
\operatorname{deg}\left(r-r_{1}\right)=\operatorname{dg}\left(\left(q_{1}-q\right) f\right)=\operatorname{deg}\left(q_{1}-q\right)+\operatorname{deg} f \geqslant \operatorname{deg} f .
$$

which leads to a contradiction since bog $\left(r-r_{1}\right)<\operatorname{deg} f$ ．
Thus．$q_{1}(x)-q_{q}(x)=0 \Rightarrow r(x)-r_{1}(x)=0$

$$
\therefore q_{1}(x)=q(x) \quad r_{1}(x)=r(x)
$$

－prop 10.6
Let \mathbb{F} be a field．$f(x) g(x) \in \mathbb{F}[x]$ with $f(x) \neq 0 \quad g(x) \neq 0$ Then there exists $d(x) \in \mathbb{F}[x]$ which satisfies the following：

1）$d(x)$ is manic
最高次犊系数为
2）$d(x)|f(x) \quad d(x)| g(x)$
3）If $e(x)|f(x) \quad e(x)| g(x) \Rightarrow e(x) \mid d(x)$
4）$d(x)=u(x) f(x)+v(x) g(x)$ for some $u(x) \cdot v(x) \in \mathbb{F}[x]$
x if both $d(x)$ \＆$d_{1}(x)$ sati fy the above conditions．
$\because d(x)\left|d_{1}(x) \quad d_{1}(x)\right| d(x)$ ．both manic
$\therefore \frac{d_{1}(x)}{T}=d_{1}(x)$ by prop 10.4
greatest commute divisor of $f(x)$ and $g(x)$
写作 $d(x)=\operatorname{gcd}(f(x), g(x))$
－irreducible
Let F be a field，a poly $l(x) \neq 0$ in $F[x]$ is irreducible if $\operatorname{deg} l \geqslant 1$ ．and whenever $l(x)=l_{1}(x) l_{2}(x)$ in $F[x]$ dey $l_{1}=0$ or \quad deg $l_{2}=0$
ex．If $l(x) \in F[x]$ satisfy dy $l=0$ ．Then $l(x)$ is irreducible ex．If $b y f=2$ or 3 ．Then f is irred $\Leftrightarrow f(d) \neq 0$ ．for any $d \in F$ ．
$e x$ ．Let $l(x), f(x) \in F[x]$ ．If $l(x)$ is irreducible and $l(x)+f(x)$ ．
Then $\operatorname{gcd}(h(x), f(x))=1$

- prop 10.7

Let F be a field $f(x) \cdot g(x) \in F[x]$
If $l(x) \in F[x]$ is irred and $l(x) \mid f(x) g(x)$. Then $l(x) \mid f(x)$ or $l(x) \mid g(x)$

* Let $f_{1}(x), \cdots, f_{n}(x) \in F[x]$ and let $l(x) \in F[x]$ be irreducible if $l(x)\left|f_{1}(x) \cdots f_{n}(x) \Rightarrow l(x)\right| f_{i}(x)$ for some i.
- The 10.8 Unique factorization Thu.

Let F be a field. $f(x) \in F[x]$ with dy $f=1$. Then we can wite $f(x)=c l_{1}(x) \cdots l_{m}(x)$ where $c \in F^{*}$ and $l_{i}(x)$ are monic irred polynomials.
The factorization is unique p to the order of $l i$

* Using The co.8. we can prove $\exists \infty$ rimed polynomids in $F[x]$
- Prop 10.9

Let F be a field. Then all ideas of $F[x]$ are of the form $\langle h(x)\rangle=h(x) F[x]$ for some $h(x) \in F[x]$.
If $\langle h(x)\rangle \neq 0$ and $h(x)$ is manic. Then the generator is uniquely determined.

* Let $A \neq\{0\}$ be an ideal of $F[x]$.
by prop 10.9. $A=\langle h(x)\rangle$ for a unique manic poly $h(x) \in F[x]$
Suppose dy $h=m=1$. Consider the quotient ring $R=F[x] / A$.
Thus $R=\{\overline{f(x)}=f(x)+A: \quad f(x) \in F[x]\}$.

$$
t=\bar{x}=x+A . \quad f(x)=q(x) h(x)+r(x)
$$

By division algorithm, $R=\left\{\overline{a_{0}}+\bar{a}_{1} t+\cdots+\overline{a_{m-1}} t^{m-1}=a_{i} \in F\right\}$
Consider the map $\theta: F \rightarrow R$ given by $\theta(a)=\bar{a}=a+A$.
$\because \theta$ is not the zero map. $\operatorname{kev} \theta$ is an ideal of F
$\therefore \operatorname{ker} \theta=\{0\} \quad \therefore \theta$ is a $1-1$ ring HM

$$
\because F \cong \theta(F)
$$

\therefore by identifying F with $v(F) . \quad R=\left\{a_{0}+a_{1} t+\cdots+a_{m-1} t^{m-1}: a_{i} \in F\right\}$
In R, cot $a_{1} t+\cdots+a_{m-1} t^{m-1}=b_{0}+b_{1} t+\cdots+b_{m-1} t^{m-1}$
$\Leftrightarrow a_{i}=b_{i}$ for all $0 \leqslant i \leqslant m-1$.

- prop 10.10.

Let F be a field and $h(x) \in F[x]$ with deg $h=m \geqslant 1$
Then the quotient ring $R=F[x] /\langle h(x)\rangle$ is given by:

$$
R=\left\{a_{0}+a_{1} t+\cdots+a_{m-1} t^{m-1}: a_{i} \in F . h(t)=\overline{0}=0+A\right\} .
$$

in which on dement of R can be uniquely represented in abbe form

- prop 0.11

Let F be a field. $h(x) \in F[x]$ with $\operatorname{deg} h \geqslant 1$. TFAE:

1) $F[x] /\langle h(x)\rangle$ is a field
2) $F[x] /\langle h(x)\rangle$ is an ID.
3) $h(x)$ is irred in $F[x]$
ex. Sind $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle \cong \mathbb{C}$ which is a field.
The poly $x^{2}+1$ is ied in $\mathbb{R}[x]$.
prove:
$(1) \Rightarrow$ (2) A field B an $2 D$.
$(2) \Rightarrow(3)$ if $h(x)=f(x) g(x)$ with $f(x), g(x) \in F[x]$.
then $(f(x)+A)(h(x)+A)=f(x) g(x)+A=h(x)+A=0+A$. in $F t x J / A$.
By (2). either $f(x)+A=0+A$ or $g(x)+A=0+A$
If $f(x) \in A=\langle f(x)\rangle$, then $f(x)=g(x) h(x)$ for some $q(x) \in F[x]$
Thus $h(x)=f(x) g(x)=q(x) h(x) g(x)$
$\because F[x]$ is an I.D. $\quad \therefore q(x) g(x)=1 \quad$ dy $g=0$
同理, if $g(x) \in A$, then $\operatorname{dy} f=0$. Thus $h(x)$ is irred in $F[x]$
(3) $\Rightarrow(1)$ Note that $F[x] / A$ is a commutative ring

Thus to slow it is a field, it suffices to show that orrery nonzero dement of $F[x] / A$ has an inverse
Let $f(x)+A \neq 0+A$. in $F[x] / A$.
$\because h(x)$ is irred and $h(x)+f(x) . \quad \operatorname{gcd}(h(x), f(x)=1$
\therefore by prop 10.6 . there exist $u(x), v(x) \in F[x]$ s.t

$$
1=u(x) h(x)+v(x) f(x)
$$

$$
\therefore(v(x)+A)(f(x)+A)=1+A \quad(\text { since } h(x) \in A)
$$

$\therefore f(x)+A$ has an inverse in $F(x] / A$

$$
\Rightarrow F[x] /\langle h(x)\rangle \text { is a field. }
$$

ex. Since $x^{2}+x+1$ has no root in \mathbb{Z}_{2}, it is irred in $\mathbb{Z}_{2}[x]$.
Thus $\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle=\left\{a+b t, a, b \in \mathbb{Z}_{2} . \quad t^{2}+t+1=0\right\}$ is a field of 4 elements

Analys,3 between $\mathbb{C} \& F[t]$

