1.1 Notetimes
- numbers: N.
$$Z$$
 R R C Zn int. module n
- numbers: N. Z R R C Zn int. module n
- numbers: For $n \in N$, an nxn matrix over R . is an nxn array
 $A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \cdots & \vdots \\ a_{2n} & \cdots & a_{2n} \end{bmatrix}$ with $a_{ij} \in R$. $I \leq i, j \leq n$.
addition: $A + B = [a_{ij} + b_{ij}]$
multiplication: $A = [a_{ij} + b_{ij}]$
 $A = [a_{ij}] = \begin{bmatrix} a_{ij} + b_{ij} \\ a_{ij} \in R \end{bmatrix}$

-prop 1.1. Let G be a group and at G
(1) The identity of G is unique.
(2) The inverse of a is unique.
proof: (1) if et & er are both identities, then
$$e_1 = e_1 \star e_2 = e_2$$

(2) if bi & bz are both inverse of a, then $b_1 = b_1 \star a \star b_2 = b_2$

ex: The set
$$(\mathbb{Z}, +)$$
, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$ all abelien groups.
where the additive identity is \mathbb{D} and the additive inverse of an
element r is $(-r)$.
For a set S , let S^{\times} denote the subset of S containing all
elements with multiplicative inverse. Then $(\mathbb{Q}^{\times}, \cdot)$ $(\mathbb{P}^{\times}, \cdot)$, $(\mathbb{C}^{\times}, \cdot)$
are abelien groups.

ex. The set
$$(Mn(R), +)$$
 is an abelian group where the additive identity is O
and the additive inverse of $M=[aij]$ is $-M=[-aij]$
The set $(Mn(R), \cdot)$ is not an abelian group since not all matrix is invertible.

ex. Let G & H be groups. Their direct product is the set G × H with
component-vise operation defined by
$$(g, h_1) * (g, h_2) = (g, *_{g}g_{2}, h_1 *_{H} h_2)$$

G×H is a group. identity (eq. en). inverse: $(g,h)^{4} = (g^{-1}, h^{-1})$
By induction: G₁, G₂, ..., G_n are groups \Rightarrow G₁ × G₂ ×... × G_n is a group
Notation: Given group G. g, gr & G. $g^{*}g_{2} = g_{1}g_{2}$. identity by 1.
inverse of g : g^{-1}
define $g^{n} = g \times ... \times g$. $g^{-n} = (g^{-1})^{n}$ $g^{\circ} = 1$

prop 1.3 Let G be a group and g.h
$$\in G$$
. Then
(1) They solving left & might concellation more publicly.
 $gh = gf \Rightarrow h = f$
 $hg = fg \Rightarrow h = f$
(2) Given $a, b \in G$. $ax = b$. $ya = b$ have unique solution for $x, y \in G$
prof. (1) $gh = gf$
 $g^+gh = g^+gf$ (by left cancellation)
 $h = f$
(2) let $x = a^-b$. $\Rightarrow ax = a(a^-b) = (aa^+)b = b$.
if u is another solution, then $au = b = ax \Rightarrow u = x$
similarly, $y = ba^-$ is also a unique solution.

- prop 1.4
$$|S_n| = n!$$
 Symmetric group in size
Given σ . $\tau \in S_n$, we can compose them to get a third elements $\sigma \tau$.
where $\sigma \tau \colon S_{1,2}, \ldots, n_{J}^{2} \rightarrow S_{1,2}, \ldots, n_{J}^{2}$. $\chi \mapsto \sigma(\tau(\chi))$
Since both $\sigma \otimes \tau$ are bijection: So is $\sigma \tau$.

$$e_{X} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \qquad \mathcal{I} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$

$$\sigma_{\mathcal{I}}(1) = \sigma(\mathcal{I}(1)) = \sigma(2) = \psi$$

$$\sigma_{\mathcal{I}}(2) = \sigma(\mathcal{I}(2)) = \sigma(4) = 2$$

$$\sigma_{\mathcal{I}} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix} \qquad \mathcal{I}\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \implies \sigma_{\mathcal{I}} \neq \mathcal{I}\sigma$$

- def. converse permutation
The identity permutation.
$$\mathcal{E}$$
 is defined as $\mathcal{E}(a) = a$. $\forall c_i \in \{1, \dots, m\}$.
Then for any $\sigma \in S_n$. we have $\sigma \mathcal{E} = \sigma = \mathcal{E}\sigma$
Finally. for $\sigma \in S_n$. Since it is a bijection. there exist a unique bijection $\frac{\sigma^{+} \in S_n}{\mathcal{E}}$
 $\sigma^{+}(x) = y \iff \sigma(y) = x$ converse permutation of σ^{+}
 $\sigma^{-}\sigma = \sigma\sigma^{-} = \mathcal{E}$

ex. the inverse
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 2 & 3 \end{pmatrix}$$
 is $\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 2 \end{pmatrix}$

The 3 by
$$9 \approx 8$$
 (1372) (46) (598) (10)
The composed to 4 cycles (1372) (46) (598) (10)

1.4 Coyley Tables
- def. Coyley Table
Criven x, y
$$\in G$$
, the product xy is the entry of the table in the row corresponding
to x and the column corresponding to y. Such a table is called Coyley Table
ep. $(\mathbb{Z}_{2}, +)$ $(\mathbb{Z}^{*}, *)$
 $\frac{\mathbb{Z}_{2}}{[0]} \xrightarrow{[0]} [1]$ $\frac{\mathbb{Z}^{*}}{[1]} \xrightarrow{[1]} + \frac{1}{[1]}$
 $[1]$ $[1]$ $[1]$ $[1]$ $\frac{\mathbb{Z}^{*}}{[1]} \xrightarrow{[1]} + \frac{1}{[1]}$ \mathbb{Z}^{*} \mathbb

- def. Cyclic Group. Cn (1) power in
$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{2}$)
The cyclic group of order n is $C_n = \frac{5}{2}, a, a^2, \dots, a^{n-1}\frac{3}{2}$. with $a^n = 1$ and a, a^2, \dots, a^{n-1} distinct.

- pop 1.14. Let G be a isomorphism group. Then.
13 IGI=1 ⇒ G ⊆ \$13
33 IGI=2 ⇒ G ⊆ C,
33 IGI=2 ⇒ G ⊆ C,
33 IGI=4 ⇒ G ⊆ C,
33 IGI=4 ⇒ G ⊆ C,
33 IGI=2 ⇒ G ⊆ \$1.9
23 IGI=2 ⇒ G ⊆ \$1.93 (g≠1).
Confer whith:
$$\frac{G_1 + g}{1 + 1} \frac{g}{g}$$

23 IGI=2 ⇒ G ⊆ \$1.9, A3 (g≠1).
Confer whith: $\frac{G_1 + g}{1 + 1} \frac{g}{g}$
33 IGI=3 ⇒ G ⊆ \$1.9, A3 (g≠1).
Confer whith: $\frac{G_1 + g}{1 + 1} \frac{g}{g}$
4 If $h = 1$ g h
Confer whith: $\frac{G_1 + g}{1 + 1} \frac{g}{g}$
4 If $h = 1$ g h
Confer whith: $\frac{G_1 + g}{1 + 1} \frac{g}{g}$
4 If $h = 1$ g h
Confer whith: $\frac{G_1 + g}{1 + 1} \frac{g}{g}$
4 If $h = 1$ g h
Confer whith: $\frac{G_1 + g}{1 + 1} \frac{g}{g}$
4 If $h = 1$ g h
Confer whith: $\frac{G_1 + g}{1 + 1} \frac{g}{g}$
4 If $h = 1$ g h
Confer whith: $\frac{G_1 + g}{1 + 1} \frac{g}{g}$
By Cancellation Pede, $gf \neq g \neq f$ h $gf = 1$ or $gf = h$
Conse 1 $gf = 1$
Cone 2 $gf = h$
Cone 2 g

Prove Ky = Cr × Cr :

$C_{2} = \{1, k\}, k\}, k^{2} = 1$												
$C \times C = \{(1, k) \times (1, g)\}$												
Cr×Cr	(1,1)	lg,1)	(1,h)	(g,h)								
(1,1)	(1,1)	(gg, 1)	(1/h)	(g,h)								
(g,1)	(g , 1)	(g ² ,1)	(g,h)	(g ² ,h)								
(1, h)	(1,h)	(g,h)	$(1, 1^{2})$	(g, h²)								
(g,h)	(g,h)	(g ² ,h)	(g-h ²)	(q^{1}, h^{2})								

- prop 2.2. Finite subgroup test
If H is a finite non-empty subset of group G,
then H is a subgroup of G
$$\cong$$
 H is closed under its operation
prof: (\Rightarrow) obvious
(\Leftrightarrow) For H $\neq \beta$, let h 6 H.
 \square :: H is closed under its operation
 \therefore h, h', h³, ... are all in H.
 \square :: H is finite
 \therefore dements are not distinct. hⁿ = h^{nom}
By concellation. h^m=1 \therefore 16 H.
 \square := h^{non}h \Rightarrow h⁻¹ = h^{non} h⁻¹ \in H.
 \square i = h^{non}h \Rightarrow h⁻¹ = h^{non} h⁻¹ \in H.
By subgroup test, H is algroup of G.
-prop 2.3. \square 16 \ge (G)
 $\forall g \in G$. ($y \ge g = y (\ge g) = y(g \ge) = (gy) \ge = g(y \ge)$
 \ni $z \in \mathbb{Z}$ G) $z^{+} \in$ G $g \in$ G. $z^{+}g = (g^{-}z)^{+} = (\ge g^{-})^{+} = gz^{-1}$
ex. consider (\mathbb{Z} .+). Since $k = 1^{min}+1$. I is a generator of (\mathbb{Z} ,+).

similary
$$\exists i a$$
 generator.
But if $\not k \neq \pm 1$. I cannot be obtained via scalar multiplication.
Let G be a group , $g \notin G$. suppose $\exists \not k \notin Z$. $\not k \neq 0$. s.f $g \not k = 1$.
then $g^{nk} = (g \not k)^n = 1$ $\forall n \in \mathbb{Z}$. Assume $\not k \geqslant 0$
By the well ordering principle, there exists a smallest possible integer n
s.f. $g^n = 1$

ep. Consider
$$(\mathbb{Z}, +)$$
 Note that $\forall k \in \mathbb{Z}$. we can write $k=k \cdot 1$
Thus $(\mathbb{Z}, +) = <1$ Similarly $(\mathbb{Z}, +) = <-1$ $(-k = k \cdot (-1))$
observe that $\forall n \in \mathbb{Z}$ with $n = \pm 1$. there exist no $k \in \mathbb{Z}$ sit $k \cdot n = 1$
Thus, ± 1 are only generators of $(\mathbb{Z}, +)$

- def. order
$$fg = 01g$$
)
Let G be a group $g \in G$.
If n is the smallest positive integer st $g^n=1$, then order of g is n $01g)=n$
If no such n exist, then g has infinite order
 $Fig:(arther f) = \infty$

-prop 2.6 Let G be a gp.
$$O(g) = n \neq N$$
 $\notin Z$
1) $g^{\sharp} = 1 \iff n \mid k$
2) $g^{\sharp} = g^{m} \iff k \equiv m \pmod{n}$
3) $cg > = \{1, g, g^{2}, \dots, g^{n-1}\}$ (dements all distinct)

proof: 1) (4) Let
$$n = qk \cdot qe Z$$
.
 $g^n = g^{sk} = (g^{e})^n = 1^{n-1}$
(>>) Let $n = qk + r$. $n \leq r < k$
 $g^n = g^{sk + r} = g^r = 1$
 $\therefore k \text{ is smallest possible } g^{k} = 1 \quad n = qk \quad k \mid n$
 $\therefore r \text{ can only be 0}$
2) $g^{k-m} = 1 \quad (by \text{ cancellation law})$
 $\therefore r \text{ can only be 0}$
2) $g^{k-m} = 1 \quad (by \text{ cancellation law})$
 $\therefore n \mid k - m \quad (by (1))$
 $\therefore k \equiv m \pmod{n}$
3) prove existence:
 $f^{n} \neq \geq n. \quad k = qn + r \quad (0 \leq r \leq n-1) \quad g^{k} = g^{r} \in 2g^{r}$
prove unight:
 $g^{a} = g^{b} \quad 0 \leq a, b \leq n-1$
 $g^{ab} = 0 \quad \leq > a - b = 0$
 $\therefore a - b \leq r \quad \therefore a = b$

- prop 2.7. Let G be a gp. g t G.
$$o(g) = \infty$$
. $\xi \in \mathbb{Z}$.
i) $g^{k} = 1 \iff \xi = 0$
i) $g^{k} = g^{m} \iff \xi = m$
3) $\langle g \rangle = \{1, g, g^{2}, \dots, j^{2}\}$ (dements all distinct)
proof: 1) ((\subseteq) $g^{0} = 1$
(\Rightarrow) $2f g^{k} = 1$. Assume $\xi = 0$
implies $o(g)$ is finite contradiction
2) $g^{k} = g^{m}$ $g^{k-m} = 1$
 $\xi = m = 0$ (by (11))

- prop 2.8 Let G be a gp.
$$g \in G$$
. $gy = n \in N$.
If $d \in N$, then $o(g^d) = \frac{n}{g(d(n,d))}$
 $d(n \Rightarrow o(g^d) = \frac{n}{d}$
prof: Let $n = \frac{n}{g(d(n,d))}$ $d_1 = \frac{d}{g(d(n,d))}$ $g(d(n_1, d_1) = 1)$
 $(g^d)^{n_1} = (g^d)^{\frac{n}{d(n,d)}} = (g^n)^{\frac{1}{g(d(n,d))}} = 1$ $o(g^d) | n$
 V Show n , is the conduct integer.
 $(g^d)^{Y} = 1$ $(r \in N)$.
 $\therefore o(g) = n$. $n | dy (prop 2.b)$
 $\therefore dr = nq$ $(q \in \mathbb{Z})$
 $\frac{d}{g(d(n,d))} = \frac{n}{g(d(n,d))} q$ $d_1r = n,q$
 $\therefore (d_1, n_1) = 1$ $n_1 | r$
 $\therefore (g^d)^{n_1} = 1$
eq. $o(g) = [o. d = 2. o(g^r) = \frac{10}{g(d(12,0))} = 5$
 $e = g^{10}$ $(g^r)^r = g^{10}$

Then
$$G_1 = cg^k \Rightarrow (m) = 1$$
.
proof: by prop 2.8 o $(g^k) = \frac{n}{gcd(n,k)} = n$.

theo 2.12 Fundamended theorem of finite cyclic gamp.
Let
$$G = cg_2$$
 be a cyclic group of order $n \in \mathbb{N}$.
1) H is a subgroup \Rightarrow $H = cg^d_2$ for some $d[n_1 - iHi]_n$
2) Conversely. $E[n \Rightarrow cg^{k_2}]$ is the unique subgroup of G of order k .
prof: (i) by prop $2.6 \cdot H$ is cyclic. $H = cg^{m_2}$ for some $m \in \mathbb{N}$.
Let $d = gid_{(m,n)}$
(Laim $H = cg^{n_2} \leq cg^{d_2}$
 $L_2 :: d[m_1 -: m=td_1 + 6Z)$
 $\therefore g^{m_2} g^{k_2} = ig^{d_1}E = cg^{d_2}$
 $\therefore H = cg^{m_2} \leq cg^{d_2}$.
(Lavin $H = cg^{d_2}$
 $\therefore d = g_id_{(m,n)}$
 $\therefore g^{d_2} = g^{k_2} = (g^{n_1})^n \cdot [Y \in Zg^{n_2}]$
 $\therefore cg^{d_2} = (g^{m_2})^n \cdot [Zg^{n_2}] = (g^{n_1})^n \cdot [Y \in Zg^{n_2}]$
 $\therefore cg^{d_2} = cg^{m_2}$
 $\therefore h = cg^{d_2}$. $G = cg = cg^{k_2}$ ged $(k, n) > 1$
(1) by prop 2.8, the cyclic subgroup $cg^{\frac{m}{2}}$ is of order $\frac{n}{gcd(m, \frac{m}{2})} = k$
To show uniqueness, let k be a subgroup of G_1 which is
of order k with $k \mid n$.
By $prop 2.6.8.2.8$. $k = 1K \mid = org^{d_1} \mid = \frac{n}{gd(m, d)} = \frac{m}{d}$.
 $\therefore d = \frac{m}{k} = cg^{\frac{m}{2}}$

_

2.5 Non-cyclic group
- def. subgroup of G generated by X.
Let X be a non-empty subset of a group G, and let

$$\langle X \rangle = \hat{s} \chi_1^{k_1}, \chi_2^{k_2}, \dots, \chi_m^{k_m} : \chi_i \in X, k_i \in \mathbb{Z}, m \ge 1].$$

denote the set of all products of powers of (non necessarily distinct) element of X.
 $\therefore 1 = \chi_1 \in \langle X \rangle$ and $(\chi_1^{k_1}, \dots, \chi_m^{k_m})^T = \chi_m^{-k_m}$ $\chi_1^{-k_1} \in \langle X \rangle$
 $\therefore \langle X \rangle$ is a subgroup of G containing X.

ex. The Klein 4 group
$$K_4 = \S_1, a, b, c_1^2 = a^2 = b^2 = c^2 = 1$$
. $ab = c$.
=> = $\langle a, b : a^2 = 1 = b^2$ $ab = bc \rangle$

ex. The symmetric gp of dynew 3.

$$S_{3}=\{\varepsilon, \sigma, \sigma^{2}, \tau, \tau\sigma, \tau\sigma^{2}\}$$
 $\sigma^{2}=\xi^{2}$ $\sigma \tau=\tau\sigma^{2}$ (can take $\sigma=(1,2)$)
 $\therefore S_{3}=\langle \sigma, \tau: \sigma^{3}=\xi=\tau^{2}$ $\sigma \tau=1\sigma^{2}$?
 $\tau, \tau \in T$ \mathcal{A} $\sigma, \tau\sigma^{2} := \mathcal{A}$ \mathcal{A} \mathcal{A}

- def. dihedral group. Dn
For
$$n \ge 2$$
. the dihedral group of order $2n$ is defined by
 $D_{2n} = \{1, a, \dots, a^{n-1}, b, ba, \dots, ba^{n-1}\}$ where $a^n = 1 = b^n$. $aba = b$.
 $= \langle a, b = a^n = 1 = b^n$ $aba = b^n$

When n=2 or n=3, $D4 \cong K4$ $D6 \cong S_3$

-
$$pmp 3.1.$$

Let $d: G \rightarrow H$ be a gp HM.
Then $1> d(e_G) = e_H$
 $2> d(g^{-1}) = d(g)^{-1}$ HgeG
 $3> d(g^{k}) = d(g)^{k}$ HgeG. $k \in \mathbb{Z}$

- def. isomorphism
Let
$$G \otimes H$$
 be gps. Consider $\alpha: G \rightarrow H$.
If α is HM. α is bijective. Then α is an isomorphism.
 $0 \approx 0$
 $0 \text{ onto } 0 \text{ one-to-one}$ $G \& H$ are isomorphic. $G \cong H$

- prop 2.2.
1) The identity map
$$G_1 \rightarrow G_1$$
 is an IM.
1) The identity map $G_1 \rightarrow G_1$ is an IM.
1) $T: G \rightarrow H$ is an IM. \Rightarrow the inverse map $T^+: H \rightarrow G_1$ is also IM
3) $T: G \rightarrow H$. $T: H \rightarrow F$ are IM, the composite map $T \sigma: G \rightarrow F$ is also IM
 $\Rightarrow \equiv is$ an equivalent relation

ex. Let
$$\mathbb{R}^{+} = \S r \in \mathbb{R}$$
. $r > 03$.
Claim $:(\mathbb{R}, +)$ is isomorphic to (\mathbb{R}^{+}, \cdot)
Define $\sigma = (\mathbb{R}, +) \rightarrow (\mathbb{R}^{+}, \cdot)$ by $\sigma(r) = e^{r}$ where e is the exponential $f'n$.
 $*$ the exponential map $\mathbb{R} \rightarrow \mathbb{R}^{+}$ is bijection.
Also, $r, S \in \mathbb{R}$. $\sigma(r+s) = e^{r+s} = e^{r} \cdot e^{s} = \sigma(r) \sigma(s)$
Thus, σ is \mathcal{M} . $(\mathbb{R}, +) \cong (\mathbb{R}^{+}, \cdot)$

ex. Claim
$$(Q, +)$$
 is not isomorphic to (Q^*, \cdot)
Suppose that $t: (Q, +) \rightarrow (Q^*, \cdot)$ is an IM.
Then τ is onto. $\Rightarrow \exists q \in Q$. set $\tau(q) = 2$. $\exists i_{T}^{q} \tau(\frac{q}{2}) = a \in Q$
it is a HM.
 $:, a^2 = \tau(\frac{q}{2}) \tau(\frac{q}{2}) = \tau(\frac{q}{2} + \frac{q}{2}) = \tau(q) = 2$
contradicts the fact that $a \in Q$.
 $::$ such r doesn't exist $(Q, +) \neq (Q^*, \cdot)$

 $G \text{ may } not \text{ be abelian} \Longrightarrow \text{ left cosets may differ from right cosets}$

D6 =	Dr	2 = 4	ξ],	, a	, a ²	, k
*	Ι	a	<i>a</i> ²	b	ab	<i>a</i> ² <i>b</i>
	Ι					
a	а	a^2	Ι	ab	a^2b	b
<i>a</i> ²	a^2	I	a	a^2b	b	ab
b	Ъ	a^2b	ab	Ι	a^2	a
ab	ab	Ъ	a^2b	a	Ι	a^2
a^2b	a^2b	ab	Ь	a^2	а	Ι

= pop 5-3
het H to a above of G. abeg
17 Ha = Hb
$$\Leftrightarrow$$
 ab¹ eH
Ha = H \Leftrightarrow aeH (30 of b=1)
27 a eHb \Rightarrow Ha = Hb
28 a eHb \Rightarrow Ha = Hb
29 a eHb \Rightarrow Ha = Hb
20 a eHb \Rightarrow Ha = Hb
20 a eHb \Rightarrow Ha = Hb. then $a = 1 \cdot a$ e Ha = Hb
20 (\Rightarrow) 2f Ha = Hb. then $a = 1 \cdot a$ e Ha = Hb
20 (\Rightarrow) 2f Ha = Hb. then $a = 1 \cdot a$ e Ha = Hb
20 (\Rightarrow) 2f Ha = Hb. then $a = 1 \cdot a$ e Ha = Hb
20 (\Rightarrow) 2f Ha = Hb. then $a = 1 \cdot a$ e Ha = Hb
20 (\Rightarrow) 2f Ha = Hb. then $a = 1 \cdot a$ e Ha = Hb
20 (\Rightarrow) 2f Ha = Hb. then $a = 1 \cdot a$ e Ha
21 (\Rightarrow) 2f ab² eH
22 (ab^{2}) 4F Ha = Hb
23 (ab^{2}) 4F Ha = Hb
24 (ab^{2}) 4F Ha
25 (ab^{2}) 4F hen ab^{2} eHb.
26 (ab^{2}) 4F hen ab^{2} eHb.
27 (ab^{2}) 4F a eHb
28 (ab^{2}) 4F a eHb
29 (a^{2}) 4F a eHb. then ab^{2} eHb.
20 (a^{2}) 4F a eHb. then ab^{2} eHb.
29 (a^{2}) 4F a eHb. then ab^{2} eHb.
20 (a^{2}) 4F a eHb. then ab^{2} eHb.
20 (a^{2}) 4F a eHb.
20 (a^{2}) 4F a eHb. then ab^{2} eHb.
27 (a^{2}) 4F a eHb. then ab^{2} eHb.
28 (a^{2}) 4F a eHb.
29 (a^{2}) 4F a eHb.
20 (a^{2}) 4F a eHb.
20 (a^{2}) 4F a eHb.
20 (a^{2}) 4F a eHb.
21 (a^{2}) 4F a eHb.
22 (a^{2}) 4F a eHb.
23 (a^{2}) 4F a eHb.
24 (a^{2}) 4F a eHb.
25 (a^{2}) 4F a eHb.
26 (a^{2}) 4F a eHb.
27 (a^{2}) 4F a eHb.
28 (a^{2}) 4F a eHb.
29 (a^{2}) 4F a eHb.
20 (a^{2}) 4F a eH

- Lagrange Theorem.
Lot H be a subgroup of a finite group
$$G \gg |H| |IG| . [G:H] = \frac{|G|}{|H|}$$

ex
$$|G| = 323 = 17 \times 19$$
.
divisors of $323 : 1.17.19 = 323$.
possible subgp orders: $1.7.19 = 523$
standard subgp : $G(1G| = 323)$ feg $(1fe_3 I = 1)$
other cubgps : $0rder = 17$ or 19 $42RR - 24RR$
ex. $|Ae| = 12$.
divisors of $12 : 1.2.3, 4.6.12$
 $\# cubgps : \# cubgp with order I = 1 $\#$ order $2 = 3$ $\#$ order $3 = 4$
 $\# order 4 = 1$ $\#$ order $7 = 1$ $\#$ order $7 = 1$$

 $-c_{0y}$ 3.5

ex.

$$Z \qquad \text{"Integers mod 5"} \qquad 5Z \qquad \text{enormal subgp} \\
r = 0: \{\dots - 15, -10, -5, 0, 5, 10, 15 \dots\} \\
r = 1: \{\dots - 14, -9, -4, 1, 6, 11, 16 \dots\} \\
r = 2: \{\dots - 13, -8, -3, 2, 7, 12, 17 \dots\} \\
r = 3: \{\dots - 12, -7, -2, 3, 8, 13, 18 \dots\} \\
r = 4: \{\dots - 11, -6, -1, 4, 9, 14, 19 \dots\} \\
r = 4: \{\dots - 11, -6, -1, 4, 9, 14, 19 \dots\} \\
\text{(Introduct group } Z/SZ \qquad group of cosets. \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \qquad group of z \\
\text{(Introduct group } Z/SZ \ group of z \\
\text{(Introduct group } Z/SZ \ group of z \\
\text{(Introduct group } Z/SZ \ group of z \\
\text{(Introduct group } Z/SZ \ group of z \\
\text{(Introduct group } Z/SZ \ group of z \\
\text{(Introduct group } Z/SZ \ group of z \\
\text{(Introduct group } Z/SZ \ group of z \\
\text{(Introduct group } Z/SZ \ group of z \\
\text{(Introduct group } Z/SZ \ group of z \\
\text{(Introduct group } Z/SZ \ group of z \\
\text{(Introduct group) } \\
\text{(Introduct group group) } \\
\text{(Introduct group group group gr$$

$$\Rightarrow H \subseteq g H g^{-1} \qquad \therefore g^{-1} H g = H.$$

$$\Rightarrow g H g^{-1} = H, \Rightarrow g H = H g.$$

matrix with dot
$$\neq 0$$
 is $2GL_{n} \cdot 2det = 1$ (- $\frac{1}{4}$)
ex. Let $G_{1} = G_{1} \perp n(P)$ $H = S \perp n(P)$
for $A \in G_{1} \quad B \in H$. $det (ABA^{-1}) = det (A)$ $det (B) det (A^{-1})$
 $= det (A) \cdot 1 \cdot \frac{1}{det(A)}$
 $= 1$
 $\therefore ABA^{-1} \in H$. $AHA^{-1} \subseteq H$. $\forall A \in G_{1}$.
By normality test. $H \land G_{1}$. i.e. $S \perp n(P) \land G \perp n(P)$

K.

- Lemma . 3, 10. Let H&F be subgroups of G. T.F.A.E 1) HE is subgp of G 2) HK=KH 3) KH is subgp of G 2) > 1) · ? I. IEHK hEEHK. : (hk)-1=k-1h-1 EKH =HK · for hk, hik, EHK. we have khi EKH=HK, khi=hrkz $(hk)(h_1k_1) = h(k_1)k_1 = h(h_1k_2)k_1 = (k_1)(k_1k_1) \in Hk.$ By Swlgp test. HK is a subgp of G. 1) = 2) (E) Let the FH. Since H&F are subges of G. we have h = EH. and kt K. "HE is also a subgp of G. we have the chiti H tHE. . KHSHK (2) 2f hk & Hk. HK is a subop of G. $(hk)^{T} = k^{-1}h^{-1} \in HK$ $k^{-1}h^{-1} = h_{1}k_{1}$ Thus. NE=EihileKH ... HESKH. HK = KH

- Then 2.12
Ha G and Ka G solvify
$$HnK=$$
?(i) \Rightarrow $HK \cong HxK$.
prof: Let $m, n \in \mathbb{N}$ ged $(m, n) = 1$
Let G be a cyclic gp of order mn . $G = \langle a \rangle$.
 $o(a) = mn$
 $det H = \langle a^n \rangle = K = \langle a^m \rangle$
 $H| = o(a^n) = m$ $|K| = o(a^m) = n$
 $H||K| = mn = 1G|$
 $G \cong H \times K$
 \Rightarrow We only used to consider Gelic gp of prime order.
 \Rightarrow Claim 1. 2f H a G and $K = G$ solving $HnK =$?(j).
 $Hum hk = kh$ $\forall heH and k \in K$
prove down 1. Consider $\chi = hk(th)^{-1} = hkh^{-1}k^{-1}$
 $khk^{-1} \in Hk^{-1} \in H$
 $\therefore x = h(th^{-1}k^{-1}) \in H$
Similarly. $\chi \in K$. $\forall \chi \in HnK =$?(j) $\therefore hkh^{-1}k^{-1} = 1$ $\Rightarrow hk =$ th
Since $H = Gn$, by $prop = 1.1$. $HK = k = chyrop$ of G .
 \Rightarrow Claim $2: \sigma$ is an $1M$
 $Pdjue \sigma: H \times K \mapsto HK$. $(h, j) \Rightarrow kk = Khe Hk =$
 $prove down 2: ket (h, k) (h, j_k) = H \times K$. By Claim 1. $hk =$?Ha.
 $\sigma(t(h, k) \cdot (h, j_k)) = \sigma(t(h, k, h))$
 $= hlakkt$
 $= hkhkt_1$
 $= hkht_1$
 $= hkt_1$
 $= hkt_$

$$f(k) = \int f(k) + \int f(k) + \int f(k) = \int f(k) + \int f$$

SO HKEHXK

- Cor 3.14

Let G be a finite group, $H, K \lor G$, $H \land K = \S \land S$. $H \land IK = IG \land$. Then $G \cong H \times K$

- definage
$$im(\alpha)$$

 $im(\alpha) = \alpha(G) = \{\alpha(g) : g \in G\} \leq H$
 $\Rightarrow \forall f \propto is surjective. Then $im \alpha = H$$

- Lemma 4.1
Let K be a subgp G. TFAE:
i) K o G
i) a b c G. the multiplication K a K b = K ab is well-defined.
proof: (1) => (2) Let K a = K a, K b = K bi
Thus
$$aa_i^{-1} \in K$$
. $bb^{+} \in K$.
To get K a b = K a, bi, , it need to show $ab(a_ib_i)^{-1} \in K$.
 $\therefore K \circ G$. $\therefore a K a^{-1} \in K$.
Thus $ab(a_ib_i)^{-1} = ab(b_i^{-1}a_i^{-1}) = a(bb_i^{-1})a_i^{-1}$
 $= a(bb_i^{-1})a^{-1} aa_i^{-1} = (a(bb_i^{-1})a^{-1})(aa_i^{-1}) \in K$
 $\Rightarrow Kab = Kaibi$.

(2) => (1) If
$$a \in G$$
. to show $k \vee G$. we need $a \models a \vdash e \nvDash for all k \vdash \mathcal{K}$.
: $k_a = k_a \quad \mathcal{K}_k = k_1$.
: $b_{\mathcal{I}}(x)$, $\mathcal{K}_a \models = \mathcal{K}_a \models_i = \mathcal{K}_a$.
: $b_{\mathcal{I}}(x)$, $\mathcal{K}_a \models_i = \mathcal{K}_a \models_i = \mathcal{K}_a$.

5) of
$$\mathbb{I}G: \mathbb{K}J$$
 is finite, then $|G/\mathbb{K}| = \mathbb{I}G: \mathbb{K}J$ (by def of index $\mathbb{I}G: \mathbb{K}J$
 $:: \mathbb{I}G|$ is finite
 $:: \mathbb{I}G/\mathbb{K}J = \mathbb{I}G: \mathbb{K}J = \frac{|G|}{|\mathbb{K}|}$

ep. Consider determinant map def:
$$G_{Ln}(\mathbb{P}) \rightarrow \mathbb{P}^{*}$$
.
Ker(det) = $S_{Ln}(\mathbb{P}) \rightarrow S_{Ln}(\mathbb{P}) \supset G_{Ln}(\mathbb{P})$

ep.
$$sgn(\sigma) = \begin{cases} 1 & if \sigma is even \\ \neg & if \sigma is odd \end{cases}$$

Ker $(sgn) = An \Rightarrow An is normal$

$$G \xrightarrow{\alpha} H$$
 $\chi: G \rightarrow H$ a homomorphism. $K = Fer(\alpha)$
 $f \xrightarrow{\alpha} f: G \rightarrow G/K$ coset map isomorphism
 G/K $\overline{\alpha}: G/K \rightarrow in(\alpha)$ $\overline{\alpha}(Kg) = \overline{\alpha}(g) = \alpha(g)$

- then 4.4 (First isomorphism Then)
If a map
$$a: G \rightarrow H$$
 be a group Homomorphism.
Then $G_1/Fer(a) \cong in(a)$
prof: Let $K = Ker a$.
 $: K \land G$. G/K is a gp.
 $: Pefne \ a: G/K \rightarrow im a$ be $a(Kg) = a(g)$ $Kg \in G/K$
 $Kg = Kg$, $\Leftrightarrow gg_i^{-1} \in K$.
 $\Leftrightarrow a(gg_i^{-1}) = 1$
 $\Rightarrow a(g) = a(g_i)$
 $: a is well-addined$. It one-to-one. It deally orto
 \Rightarrow For $g:h \in G$.
 $a(KgFh) = a(Kgh) = a(gh) = a(g)a(h)$
 $= a(Kg) a(Kh)$
 $: a is HM$ $: im a \cong G/Ker a$

-prop 4.5

$$\alpha: G \Rightarrow H$$
 is a HM. K: Ker (d)
 α function uniquely as $\alpha = \overline{\alpha}$ where $f: G \Rightarrow G/K$ is the coset map
 $\overline{z} = \overline{\alpha} (K_g) = \alpha(g)$ f is onto. $\overline{\alpha}$ is one-to-one
G is a cyclic gp $G = \langle g \rangle$
 $\alpha: (\mathbb{Z}, +) \Rightarrow G$ defined $\alpha(n) = g^k$ $\forall n \in \mathbb{Z}$. α is orto
if $og \geq \infty$. $Ker(\alpha) = \{0\}$ by $kt \in M$. $G \equiv \mathbb{Z}/\{o\} \cong \mathbb{Z}$
 $Kemed (\alpha) = \{n \in \mathbb{Z} \ \cap \ mod(ogs) \geq o\}$ $G \equiv \mathbb{Z}o(g)$
if G is give $G \equiv \mathbb{Z}$ or $G \equiv \mathbb{Z}_K$. where $K = order$ of G

- Thun 5.2 Extended Cayley's Theorem
Let H be a subgp of a gp G with
$$[G:H] = m < \infty$$
.
2f G have no normal subgp contained in H except §1],
then G is isomorphic to a cubgp of Sm.
 $Kert = K \leq H$
H 7. July contain a normal subgp of G
 $G/K = imT$
 $\Rightarrow \frac{|G||}{|K||} = |G||$ $(TCG) = im(d)$)
 $\Rightarrow |K| = 1$

prof:
$$|X| = \overline{L}G:HJ = m$$
 Sx \subseteq Sm.
 $\overline{L}: G \gg Sx \in HM$ $\underbrace{Fer} \overline{L} \subseteq H$. $\underbrace{|G|}_{|H|} = |\operatorname{im} \overline{L}|$
 \therefore By let $\overline{J}M$ Thm, $G/\overline{Fer} \overline{L} \cong \operatorname{im} \overline{L}$.
 \therefore Ker $\overline{L} \subseteq H$. $\overline{Fer} \overline{L} \supset G$.
 \therefore $\overline{Fer} \overline{L} \subseteq H$. $\overline{Fer} \overline{L} \supset G$.
 \therefore $\overline{G} \cong \operatorname{im} \overline{L}$. $Sx \cong Sm$

Cor s.3
Lot G be a finite gp and p be smallest prime at p [G]
2f H is a ship of G with
$$TG:HJ=p$$
, then $H \triangleleft G$.
Yourderstim of property
 $IG[=p_i^{H}p_i^{He} \cdots p_i^{He} p_i^{He}p_i^{He}]$
 $IG[=p_i^{He}p_i^{He} p_i^{He}p_i^{He}p_i^{He}]$
 $IG[=p_i^{He}p_i^{He}p_i^{He}p_i^{He}p_i^{He}p_i^{He}p_i^{He}p_i^{He}]$
 $IG[=p_i^{He}p_$

5.2 Group Actions
- def. (left) group action
Let G be a gp
$$\cdot$$
 X be a non-couply set.
A (left) group action of G on X is a mapping G \times X=X.
(a, X) \mapsto ax. s.t i) $1 \cdot x = x$ $\forall x \in X$
 $(a, x) \mapsto ax$. s.t i) $1 \cdot x = x$ $\forall x \in X$
 $(a, x) \mapsto ax$. s.t i) $1 \cdot x = x$ $\forall x \in X$
 $(a, x) \mapsto ax$. s.t i) $1 \cdot x = x$ $\forall x \in X$
 $(a, x) \mapsto ax$. s.t i) $1 \cdot x = x$ $\forall x \in X$
 $(a, x) \mapsto ax$. s.t i) $1 \cdot x = x$ $\forall x \in X$.
 $(a, x) \mapsto ax$. s.t i) $1 \cdot x = x$ $\forall x \in X$.
 $(a, x) \mapsto ax$. s.t i) $1 \cdot x = x$ $\forall x \in X$.
 $(a, x) \mapsto ax$. s.t i) $1 \cdot x = x$ $\forall x \in X$.
 $(a, x) \mapsto ax$. s.t i) $1 \cdot x = x$ $\forall x \in X$.
 $(a, x) \mapsto (a, x) \in X$.
 $(a, y) \mapsto (a, y) \in X$.
 $(a, x) \mapsto (a, y) \in X$.
 $(a, y) \mapsto (a, y) \in X$.
 $(a,$

ex. If G is a gp. Let G acts on itself. i.e.
$$X = G$$

by $ax = axa^{-1}$ for all $a, x \in G$. $1 \cdot x = |x|^{-1} = x$.
 $a \cdot (b \cdot x) = a (b \cdot x b^{-1}) = a (b \cdot x b^{-1}) a^{-1} = (ab) \cdot x (ab)^{-1} = (ab) \cdot x$.
It G acts on itself by conjugation.

- Remark

The set is called centralier of X and is denoted by $S(x) = C_{G(x)}$ In this case, the orbit $G(x) = g g g^{-1}$: $g \in G^{2} G^{2}$ is conjugate class of X.

- Lemma 5.7
det G be a gp of order
$$p^{m}$$
 acting on a finite set $X \neq p$.
Let $X_{f} = \{\pi \in X : a : \pi = \pi \; \forall a \in G\}$
Then $|X| = |X_{f}| \pmod{p}$
proof: By Them 5.5.
 $|X| = |X_{f}| + \sum_{i=1}^{n} [G_{i} : S(\pi i)] \text{ with } [G_{i} : S(\pi i)] > 1 \quad (1 \leq i \leq n)$
 $\therefore [G_{i} : S(\pi i)] \text{ divides } [G_{i}] = p^{m} \text{ and } [G_{i} : S(\pi i)] > 1.$
 $\therefore p \mid [G_{i} : S(\pi i)] \text{ for all } i.$
 $\therefore |X| = |X_{f}| \pmod{p}$
 $|S_{\pi i}| |G| \Rightarrow |S_{\pi i}| p^{m}$
 $p^{\dagger}(f \in m)$

- Then 5.8 Candy Then
Pool that as a consequence of Lagrange Then
If a gp G is finite gt G: then and II an element of order on?
Let p be a prime and G a finite gp
If pliG1, then G contains an element of order p.
Proof: Define
$$X=S(a,...,a_p): a, c G = a, ..., a_p = 1$$

 $\therefore a_p = (a_1 a, ..., a_p): a, c G = a, ..., a_p = 1$
 $\therefore a_p = (a_1 a, ..., a_p): a, c G = a, ..., a_p = 1$
 $\therefore a_p = (a_1 a, ..., a_p): a, c G = a, ..., a_p = 1$
 $\therefore a_p = (a_1 a, ..., a_p): a, c G = a, ..., a_p = 1$
 $\therefore a_p = (a_1 a, ..., a_p): a, c G = a, ..., a_p = 1$
 $\therefore pin \therefore |X| \equiv 0 \pmod{p}$ $\forall x = bare |X| = b^{1/2}$ $\forall x = bare |X| = b^{1/2}$
 $\therefore pin \therefore |X| \equiv 0 \pmod{p}$ $\forall y = y dy = y dy = b^{1/2}$
 $a = c a_1 x + c a_1, ..., a_p = (a_{p+1}, a_{p+2}, ..., a_p, a_1, ..., a_p)$
 $one c a_1 verify that this action is well-dified
 $d = x = c a_1 x + c a_1 |X_F| \ge 1$
 $\therefore |X_F| \ge p$.
 $\therefore There exists a \neq f = ct (a_1, ..., a_1) \in X_F$
 $which inplies a^{1-1}$
 $\therefore p = b = a prime = a \neq 1$
 $\therefore p = b = a prime = a \neq 1$
 $\therefore p = b = a prime = a \neq 1$
 $\therefore p = b = a prime = a \neq 1$
 $\therefore p = b = a prime = a \neq 1$
 $\therefore p = b = a prime = a \neq 1$
 $\therefore p = b = a prime = a \neq 1$
 $\therefore p = b = a prime = a \neq 1$
 $\therefore p = b = a prime = a \neq 1$$

- Cov b.2 The center Z(G) of a non-trivial finite p-gp contains more than 1 element proof. Recall class equation $(\cos 5b)$ of G: $|G| = |Z(G)| + \sum_{i=1}^{n} [G : C_G(X_i)]$ where $[G: C_G(X_i)] > 1$: G is a p-gp : by (cor b.1) |G| is a power of p. by |emma 5.7. $|Z(G_1)| = |G| (mod p) \rightarrow p||Z(G_2)|$ $: |Z(G_1)| \ge 1$ (Since $|E|Z(G_2)$) $: |Z(G_1)| \ge p$ (Z(G) has at least pelements)

Lemma 63
If H is a p-subgp of finite gp G.
Hun
$$[N_{G}(H): H] \equiv [G: H] \mod p$$
)
the nomalizer of H: $N_{G}(H) := \frac{1}{2}g \in G: gHg^{-1} = H$ $(H \triangleleft N_{G}(H))$
proof. Let X be the set of all left cosols of H in G. $|X| = [G: H]$
Let H act on X by left multiplication.
For $x \in G$. we have
 $xH \in X_{F} \Leftrightarrow h \times H = xH$ $\forall h \in H$
 $\Leftrightarrow x^{-1}hxH = H$ $\forall h \in H$
 $\Leftrightarrow x^{-1}hx = H$
 $\Leftrightarrow x \in N_{G}(H)$
 $\therefore |X_{F}| : \frac{1}{2}$ the number of cosols xH with $x \in N_{G}(H)$
 $|X_{F}| = [N_{G}(H): H]$
By lemma 5.7. $[N_{G}(H): H] = |X_{F}| = |X| = [G: H] \pmod{p}$
- Cor 6.4
Let H be a p-subgp of a gp G.

b.2 Sylow's Three Theorems
- First Sylow Thm (Thim b.5)
• Let G be a gp of order p° m, where
$$p \in p^{nime}$$
. $n \ge 1$ gcd $(p,m) = 1$
Then G combins a subgp of order p^{i} $\forall i : 1 \le i \le n$.
• Every only of G of order p^{i} $(i \le n)$ is normal in some only of order p^{i+1}
proof. Prove by induction
 $\Rightarrow i \ge 1$ $G_{1} = p^{nim}$ gcd $(p,m) = 1 \Rightarrow G$ contains subgp order p^{i}
 \therefore plight by Couchy's Thim.
 \therefore G contains on demont a of order p $[\le n \ge 1] = p$
 \Rightarrow suppose the abdoment holds for come $1 \le i \le n$.
 H is a subgp of G with order p^{i}
 $H_{1}[= 1H] \cdot \frac{H_{1}}{H_{1}} = p^{i} \cdot p = p^{i+1}$
Then $p \mid E \in H_{2}$.
By Thim 5.8. $N(G_{1}(H)/H)$ contains a subgp of order p .
Such a gp is of t. H_{1}/H , where H_{1} is a subgp of $N(G_{1}(H)$ containing H
 \therefore $H i \in H_{2}$.
 $H i \in H_{2}$

-def. Sylow p-subgp of G. Gie Jet ind p-gp
A subgp P of a gp G is said to be a Sylow p-subgp of G if
P is a maximal p-gp of G.
i.e. PSHSG with H a p-gp
$$\Rightarrow$$
 P=H.

- Cor b.b
Let G be a gp of order pⁿm, where p & prime. N > 1. gcd (p,m) = 1
Let H be a p-subgp of G.
1) H is a Sylow p-subgp
$$\iff$$
 IHI = pⁿ Sylow p-gp $\stackrel{>}{\sim}$ $\stackrel{>}{\neq}$ $\stackrel{>}{\neq}$ $\stackrel{>}{=}$ $p - gp$
>) Every conjugate of a Sylow p-subgp is a Sylow p-subgp $a \cdot x = a \times a^{-1} \in G$
3) If there is only one Sylow p-subgp P, then P 1 GI.

- Second Sylow Than (Thin 6.T)
2f H is a p-subgp of a finite gp G, and P is any Sylow p-subgp of
G, then there exists
$$g \in G$$
 s.t. $H \leq gPg^{-1}$
In porticular, any $\geq Sylow$ p-subgps of G are emjigible
proof: det X be the set of all left cosels of P in G.
H act on X by left unitiplication.
By lemma 5.7. $|X_f| \equiv |X| \geq I G \geq P J$ (unod p)
 $\therefore p \nmid I G \geq P J$ $\therefore |X_f| \neq 0$
Thus there exists $gP \in X_f$ for some $g \in G$.
 $gP \in X_f \iff hgP = gP$ the H
 $\iff g^{-1}hg \leq P$
 $\iff H \leq gHg^{-1}$
If H is a Sylow p-subgp.
Then $|H| = |P| = |gPg^{-1}|$
 $\therefore H = gPg^{-1}$

ex. Claim every gp of order 15 is cyclic.

$$n_{1} = \#$$
 sylow 3
 $n_{2} = \#$ sylow 5 $n_{2} | 2$ $n_{3} = 1 \pmod{5}$
det G be gp of order $(5 = 3 \cdot 5)$.
 n_{p} be the number of cylow p-subgp of G.
By the third Sylow Then. $n_{2}|S$ and $n_{3} = 1 \pmod{5}$
Thus $n_{3} = 1$.
 $The thore I only one Sylow - 3 subgp and Sylow - 5 subgp of G.
Thus, $P_{2} \triangleleft G$ and $P_{5} \triangleleft G$.
Consider $|P_{3} \cap P_{5}|$, which divides $3 \And 5$.
Thus $|P_{3} \cap P_{5}| = 1$ $P_{3} \cap P_{5} = 513$ $|P_{3}P_{5}| = 15 = 161$
 $The follows G \cong P_{3} \times P_{5} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{5}$$

ex. There are 2 isomorphic classes of gps of order 21.
Let G be a gp of order 11=3.7.
Np be the number of sylow p-subgp of G.
Thus we have
$$ns=1$$
 or 7. $n_7=1$
It follows that G has unique Sylow 7-subgp : P7
Note that P7 IG and P7 is cyclic · P7= x⁷=1
Let H be a sylow 3-subgp.

Let
$$H$$
 be a sylow 3-subgp.
 $\therefore |H| = 3$ $\therefore H$ is cyclic $H = cy>$ with $y^3 = 1$
 $\therefore P_7 = G$. $\therefore y \cdot y^4 = \chi^7$ $0 \le i \le 6$
 $\therefore i^3 \equiv 1 \pmod{7}$ $\therefore i^2 = 1, 2, 4$

1) If
$$i=1$$
, then $y \times y^{-1} = x$ i.e. $yx = xy$ Thus G abelian, $G \cong \mathbb{Z}_2$.
2) If $i=2$, then $y \times y^{-1} = x^2$ i.e. $g = g = g = y \times y^2$: $o = j \le 2 \cdot y \times y^{-1} = x^2g$
3) If $i=4$, then $y \times y^{-1} = x^{\mu}$ $y^{\lambda} \times y^{\lambda} = y \times^{\mu} y^{-1} = x^{1b} = x^{1}$
 $\times y^{\lambda}$ is also a generator of I-1. Thus be replacing.

By replacing y by y", we get back to case (2). It following that there are 2 isomorphism classes of gps of order 21.

7. Finite Abelian group
7.1 Primag Decomposition:
Nother: Let G be a gp . mo Z. We define
$$G^{(m)} = \int geG : g^{m} = 1 f$$

 $prop ? ! Let G be an gp. Then $G^{(m)}$ is a subgroup of G.
 $prof : -1 = 1^{m} \in G^{(m)}$
 $- Let g \cdot h \in G^{(m)}$
 $: G is abelian :: (gh)^{m} = g^{m}h^{m} = 1$
 $: f h \in G^{(m)}$
 $: (g^{-})^{m} = g^{-m} = (g^{m})^{-1}$ $g^{-1} \in G^{(m)}$
 $g^{-1}g^{-1} = g^{-m} = (g^{m})^{-1}$ $g^{-1} \in G^{(m)}$
 $g^{-1}g^{-1} = g^{-m} = (g^{m})^{-1}$ $g^{-1} \in G^{(m)}$
By subgroup test. $G^{(m)}$ is a subgroup of G.
 $= prof ? ?$
Let G be a finite abelian gp with $1G_{1} = mt$ $ged(m, k) = 1$.
Then (1) $G \cong G^{(m)} \times G^{(k)}$
 $prof ? ? G is abelian :: $G_{1}^{(m)} = G G^{(m)} = G G^{(m)} = G G^{(m)} = G G^{(m)} = G^{(m)$$$

$$g = g^{m \times k + k} = (g^m)^{\times} (g^k)^{\vee} \in G^{(m)} G^{(k)}$$
Combining Upin 1 & 2. by them 3.13. $G \cong G^{(k)} \times G^{(k)}$
2) Lot $[G^{(m)}] = m'$ $[G^{(k)}] = k'$
By (1). $mk = IG_1 = m'k'$
Claim: gcd Lm, $k > = 1$
proof: Suppose god (m, $k' > \neq 1$
Then there exist a prime of $p|m$ $p|k'$.
By Conduy's them. $\exists g \in G^{(k)} \circ g > = p$.
 $\Box p|m \quad \Box g^m = (g^p)^{\overrightarrow{p}} \quad \exists g \in G^{(m)}$
By (1). $g \in G^{(m)} \cap G^{(k)} = \{1\} \rightarrow \text{ contradiction}$
 $\Box \circ g > = p \quad \Box g d (m, k') = 1$
 $\Box m \mid m'k' \quad gcd (m, k') = 1 \quad \Box m \mid m'$
Similarly, $k \mid k'$.

- Then 7.5 Primary Decomposition Then. I General in 1/1/2
Let G be a finite abelian gp with
$$|G| = p_i^{n'} \cdots p_k^{n_k}$$
 (p_i ... p_k are distinct primes)
Then 1) $G \cong G(p_i^{n''}) \times \cdots \times G(p_k^{n_k})$
 $> |G(p_i^{n''})| = p_i^{n''}$ ($|s_i \leq k$)
 x_i Let $G = Z_{is}^{*}$.

Then
$$|G| = 12 = 2^{2} \cdot 3$$
.
 $G^{(4)} = \{a \in \mathbb{Z}_{15}^{*} : a^{4} = 1\} = \{1, 5, 8, 12\}$
 $G^{(5)} = \{a \in \mathbb{Z}_{15}^{*} : a^{5} = 1\} = \{1, 5, 9\}$
By Thm 7.3. $\mathbb{Z}_{15}^{*} \equiv \{1, 5, 8, 12\} \times \{1, 3, 9\}$

7.2 Structure Thm of Finite Abelian Groups by Thm 7.3. a finite abelian gp is isomorphic to a direct product of finite abelian gps of prime power order. Thus is suffice to consider these gps now. Recall : $|G| = p \Rightarrow G \equiv Gp$. $|G| = p^2 \Rightarrow G \equiv Gr$ or $Gp \times Gp$ Q. How about $|G| = p^3 \cdot p^4 \cdots$

- prop 7.4.
If G is a finite abelian p-gg that contains only 1 subgp of order p.
Then G is yeld:

$$\pm 7$$
 is its. of a finite abelian p-gp G is not cycle.
then G has at least 2 subgps of order p.
prof: Suppose G \neq 2g > .
Then the quatient group G/2g> is a non-third p-gp which endows
an dement Z of order p by Cardy's Them.
In particles $\neq \pm 1$
Consider the coset map $\pi : G \Rightarrow G/2g>$
Let $\pi \in G$ satisfy $\pi(x) = Z$.
 $\therefore \pi(x)^p = \pi(x)! = 2! = 1$ $\therefore x! \in 2y>$
Thus $x! = y^m$ for some $m \in Z$.
Case 1: If $p \neq m$.
 $\therefore org p p 2.11$. $org^m = orgp$

case 2: 2f plm. Let
$$m=pk$$
. (462)
 $\therefore x^{p} = y^{m} = y^{pt}$
 $\therefore G$ is abelian
 $\therefore (x y^{-k})^{k} = 1$
 $\therefore xy^{-k}$ belongs to the one and only subgr of order p. Soy H.
The cyclic gp $\angle y >$ contains a subgr of order p. which must
be the one and only H.
 $\therefore xy^{-k} \in \langle y >$ which implies $x \in \langle y >$.
 $\therefore z = \tau_{i}(x) = 1$. contradiction.

So. G= <y>

- prop 7.5.
Let G be a finite abelian p-gp. C be a cyclic cutgp of maximal order.
Then G contains a solupp B. set G = CB
$$C \cap B = \{1\}^{2}$$
.
Thus by them 3.13, we have $G \cong C \times B$
proof:
If $|G|| = p$: we take $G = C$ $B = \{1\}^{2}$ and the result follows
Suppose that the result holds for all abelian gp of order p^{n-1} with $n \in \mathbb{N}$. $n \ge 2$.
Consider $|G|| = p^{n}$.
Case: If $G = C$. then by $B = \{1\}^{2}$. the result follows
(ase: If $G = C$. then G is not cyclic
 B_{j} prop 7.4.
Since C is gdic. by The 2.12. It contains exactly one subgp of order p
Thus there exist a cutopp D of G with $|D|| = p$. D $\neq C$.
 $\therefore C \cap D = \{1\}$.

Consider cost map:
$$\pi: G \rightarrow G/D$$
.
of we consider π/c . the restriction of π on C .
than for $\pi/c = C \cap D = f(t)$
Thus by be $I \cap f$ then, $\pi(cC) \equiv C$
Let y be a generator of the cyclic gp C , i.e. $C = cy>$
 $\pi(cC) \equiv C$. $\pi(cC) = \langle \pi_{cyy} \rangle$
 \therefore By the assumption on C . $\pi(cC)$ is a gelic gp f G/D of maximal order
 $\forall |G/D| = p^{n-1}$
 \therefore by inductive hypothesis. G/D contains a subgp E at $G/D = \pi(cD) = E$
 $Cloim1 \quad G = CB$
prof : Notice that E is a subgp containing $f(t)$.
 $\forall x \in G : \forall \pi(cC) = \pi(B) = \pi(cD) = \pi(cD) = G/D$.
 $\therefore \exists u \in C \quad v \in B$. $s: \forall \pi(x) = \pi(u)\pi(v)$
 $\forall \pi(\piu^{-1}v^{-1}) = 1 \quad x = u^{-1}v^{-1} \in D = B$.
 $\forall b \in B \quad x = u^{-1}v^{-1} \in D = B$.
 $\forall b \in B \quad x = u^{-1}v^{-1} \in D = B$.
 $\forall b \in B \quad x = u^{-1}v^{-1} \in D = B$.
 $\forall b \in B \quad x = u^{-1}v^{-1} \in D = B$.
 $\forall b \in B \quad x = u^{-1}v^{-1} \in D = B$.
 $\forall b \in B \quad x = u^{-1}v^{-1} \in D = B$.
 $\forall b \in B \quad x = u^{-1}v^{-1} \in D = B$.
 $\forall b \in B \quad x = u^{-1}v^{-1} \in D = B$.
 $\forall b \in B \quad x = u^{-1}v^{-1} \in D = B$.
 $Then \pi(x) = \pi(c) \cap \pi(cB)$.
 $Then \pi(x) = \pi(cC) \cap \pi(cB)$.
 $= \pi(c) \cap E$
 $= f(t)^{-1} = f(t)^{$

- Thm 7.6.

-Thm 7.7 Structure Thus of finite abelian gps.
2f G is a finite abelian gp. Then
$$G \cong \mathbb{Z}p_1^{n_1} \times \cdots \times \mathbb{Z}p_r^{n_r}$$
 (p: not necessarily distinct)
where $\mathbb{Z}p_1^{n_1} = (\mathbb{Z}p_1^{n_1}, +) \cong \mathbb{C}p_1^{n_1}$ are cyclic gps of order $p_1^{n_1}$ ($l \in i \in k$)
The numbers $p_1^{n_1}$ are uniquely determined up to their order.

- Thum 7.8 Invariant Factor Decomposition of finite abelian gp.
Let G be finite abelian gp.
Then
$$G \cong \mathbb{Z}_n, \times \cdots \times \mathbb{Z}_n$$
 where $n \in \mathbb{N}$ $(1 \le i \le r)$ $n > 1$ $n | n r | mr$

exe. Consider an abolism gp G7 of order 48.
1:
$$48 = 2^{4} \cdot 3$$
.
1: by them 7.3. G is isomorphic to H *Z3 where H is an abelian gp of order 2^e
The options of H are $Z_{1}^{e}, Z_{2}^{i} \times Z_{2}, Z_{2}^{e} \times Z_{2} \times Z$

Recall : for a gp 4.g
$$\in$$
 G. we have $g^{\circ}=1$ and $g'=g$ and $(g^{+})^{+}=g$
Thus for addition : $0: a = 0$ $1: a = a - (-a) = a$
For $n \in \mathbb{N}$. Define $(-n)a = (-a) + \dots + (-a)$ $(n7 - a \neq 37 \circ)$
 $a^{\circ} = 1$
If the multiplication inverse of a exist. : a^{+} . $aa^{+} = 1 = a^{+}a$.
define $a^{-n} = (a^{-})^{n}$

- prop 8:1
Let R be a ning
$$S \in \mathbb{R}$$
.
1) if 0 is zero of R. then $0 \cdot r = r \cdot 0 = 0$
2) $(-r) = r (-s) = -rs$
3) $(-r) (-s) = rs$
4) $\forall m. n \in \mathbb{Z}$. $(mr)(ns) = (mn)(rs)$

- def. trivial ring.
A ring with only one element. In this case.
$$1 = 0$$
.
2f R is a ring with $R \neq \{0\}$. $: r = r \cdot 1$ Hrep.
 $: we have 1 \neq 0$. R not trivial.

ex.
$$P_1, \dots, P_n$$
 be rigs. We define componentwise operations on the poduct
 $P_1 \times \dots \times P_n$ as follows:
 $P_1 (Y_1, \dots, Y_n) + (S_1, \dots, S_n) = (Y_1 + S_1, \dots, Y_n + S_n)$
 $P_1 (Y_1, \dots, Y_n) (S_1, \dots, S_n) = (Y_1 S_1, \dots, Y_n S_n)$
 $P_1 (Y_1, \dots, Y_n) (S_1, \dots, S_n) = (Y_1 S_1, \dots, Y_n S_n)$
 $P_1 (P_1, \dots, P_n) (P_n) = (Q_1, \dots, Q_n)$
 $P_1 (P_1, \dots, P_n) = (Y_1 S_1, \dots, Y_n S_n)$
 $P_1 (P_1, \dots, P_n) = (Y_1 S_1, \dots, Y_n S_n)$
The ring $P_1 \times \dots \times P_n$ are direct product of P_1, \dots, P_n .

- def. characteristic of
$$P$$
. $ch(P)$
of P is a ning, define characteristic of R . in terms of order of
12 in additive $gp(P, +)$
 $ch(P) = \begin{cases} n & \text{if } U(P) = n \in N & \text{in } (R, +) & \text{finite } gp \\ 0 & \text{if } U(P) = \infty & \text{in } (R, +) & \text{infinite } gp \end{cases}$

For
$$k \in \mathbb{Z}$$
, $k : R \ge 0$ means $kr = 0$ $\forall r \in \mathbb{P}$.
by prop $k : 1$. $k : r = k (l_R : r) = (k \cdot l_R) : r$.
Thus $kR \ge 0$ $\iff k : l_R \ge 0$.

$$-prop & 8:2$$

$$i) ch(R) = n \in \mathbb{N} \implies kR = 0 \iff n \mid k$$

$$v) ch(R) = 0 \implies kR = 0 \iff k = 0$$

ex. Z. Q. P. C has characteristic O.
For
$$n \in \mathbb{N}$$
. $n \ge 2$. $n \ge n$ has characteristic n.

8.2 Submigs
- 4f. Submigs
A cubical S of a ving R is a cubing if S is a ring itself with
$$ls = le$$

* property (*) (*) (*) (7) (7) of a ring automatically satisfy
Thus to show S is a cubing.
- Submig Teat
1) $lr \in S$
1) $lr \in S$
2) if st eS . then S-t, st are all in S.
* lf >> hidds, then $0 = s + s + eS$ $-t = 0 - t eS$
EX We have a chain of commutative rings.
 $Z = Q = P = C$.
EX. We have a chain of commutative rings.
 $Z = Q = P = C$.
EX. We have a chain of commutative rings.
 $Z = Q = P = C$.
EX. We have a chain of commutative rings.
 $Z = Q = P = C$.
EX. We have a chain of commutative rings.
 $Z = Q = P = C$.
EX. We have a chain of or all reP .
 $(s_1) = \frac{1}{2} eP : 2V = VZ = VVEPJ$
* $lr \in Z(R)$.
* $lr \in Z(R)$. then for all reP .
 $(s_1 - t) r = s(r - t) = s(rt) = r(s_1 - t)$
 $(s_1) r = s(tr) = s(rt) = r(s_1 - t)$
By ordering test: $Z(P)$ is a subming of P.
EX. Lat $Z(c) = \frac{1}{2} a + bi$: $a, b \in Z$ $i^2 = -13$
Then one can show $Z(c)$ is a subming of C.
called the ring of Gaussian integer

8.5 Ideals
Let R be a nig and A an additive subgp of R.

$$\therefore$$
 (R, +) is abolian $\therefore A \land R$.
Thus we have additive gentiest gp:
 $R/A = \S r \in A : r \in R^2$ with $r + A = \S r + a : a \in A^2$.
- prop 8.3
Let R be a ning and A an additive subgp of R.
For $r \cdot s \in R$, we have
 $r + A = s + A \iff r - s \in A$
 $r + A = s + A \iff r - s \in A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = A = r + s + A$
 $r + A = r + s + A$
 $r + a = a$
 $r + a = b + a$
 $r + A = a$
 $r + A = a$
 $r + A = b + r + A$
 $r + b + c = b + r + A$

1)
$$Pa \leq A$$
 $aR \leq A$ for every $a \leq A$.
2) For $r.s \in R$. the multiplication $(r+A)(s+A) = rs+A$. is
well-defined in P/A .
prof: $(D \geq r)$ of $r+A = r_1+A$ $s+A = s_1+A$. We need to show $rs+A = r_1s_1+A$
 $: (r-r_1) \leq A$ $(s-s_1) \leq A$
 $: (r-r_1) \leq A$ $(s-s_1) \leq A$
 $: (r-r_1) \leq r_1s_1 + r_1s_1 = r_1s_1$
 $= (r-r_1) \leq r_1s_1 + r_1(s-s_1) \leq (r-r_1)R + R(s-s_1) \leq A$
by prop 8.3 1). $rs+A = r_1s_1+A$.
 $rs = (r+A)(a+A)$
 $= (r+A)(a+A)$
 $= (r+A)(a+A)$
 $= 0+A = A$
Thus $ra+A = Ra \leq A$.
 $rs = A$
Thus $ra+A = Ra \leq A$.
 $rs = A$
 $rs =$

ex. Let
$$P$$
 be commutative ring . $a_1 \cdots a_n \neq P_3$
Consider set I generated by $a_1 \cdots a_n$
i.e. $I = \langle a_1, a_2, \cdots, a_n \rangle = \int r_1 a_1 + \cdots + r_n a_n + r_i \in P_3^2$
Then I is ideal.

Let A be an ideal of a ning P.
If IF & A. then A = R
Simily
proof: For every r & R.
: A is an ideal. IR & A
: we have
$$r = r \cdot IP \in A$$
.
R & A & CR Hence R=A.

- prop 8.7.
All ideals of
$$Z$$
 are of the form $< a>$ for some $n \in Z$.
If $cn > \neq < o>$. $n \in \mathbb{N}$. Then the generator is uniquely determined.

ex. The mapping
$$k \rightarrow [k]$$
 for Z to Zn is an onto ring HM
ex. 2f P_1 & R_2 be rings.
the projection T_1 : $R_1 \times R_2 \rightarrow P_1$ defined by $T_1(r_1r_2)=r_1$ is an onto ring HM.
 $T_1: P_1 \times P_2 \rightarrow P_2$ defined by $T_1(r_1r_2)=r_1$ is an onto ring HM.

- def. ving isomorphism.
A mopping of rings
$$0: R \rightarrow S$$
 is a ring isomorphism of 0 is a
homomorphism and 0 is bijective.
R&S are isomorphic. is if $P \cong S$.

•

- Thm 8.10 (lst IM Thm.)
Let
$$0: R \rightarrow S$$
 be a n'ng HM.
We have $P/ker 0 \cong im 0$.

proof: Let
$$A = \text{Ker } 0$$
.
i'A is an ideal of P . : P/A is a ring.
Define the ring map $\overline{0}: P/A \rightarrow \text{in } 0.$ $\overline{0} (r+A) = 0(r)$ $\forall r+A = P/A$.
 $r+A = s+A$.

- Then 8.13 (ind IM Then)
Lef A & B be ideals of a ring with
$$A \leq B$$

Then B/A is an ideal of P/A , and $(P/A)/(P/A) \leq P/B$.
 $VB : n \mid Z$
 $ged(m, n) = 1 \Rightarrow \begin{cases} \pi \leq b \pmod{n} & \pi \in Z_n = Z/mZ \\ \pi \leq c \pmod{n} & \pi \in Z_n = Z/mZ \\ \pi \leq c \pmod{n} & \pi \in Z_n = Z/mZ \\ m Z = Z/mZ$

Let
$$m. n \in \mathbb{N}$$
. gid $(m, n) = 1$.
By Euclid Limma. $I = mr + ns$ for some $r > 6\mathbb{Z}$
Then $I \le m\mathbb{Z} + n\mathbb{Z}$. $m\mathbb{Z} + n\mathbb{Z} = \mathbb{Z}$.
Figed $(m, n) = 1$ $(m \mathbb{Z} \cap n\mathbb{Z} = mn\mathbb{Z})$
By $(\mathbb{E}T)$, we have:
- Cor 8.15
 $I = U m, n \in \mathbb{N}$. gid $(m, n) = 1$. Then $\mathbb{Z}mn = \mathbb{Z}m \times \mathbb{Z}n$
 $2 = 2 m n \in \mathbb{N}$ gid $(m, n) = 1$. Then $\mathbb{Z}mn = \mathbb{Z}m \times \mathbb{Z}n$
 $2 = 2 m n \in \mathbb{N}$ gid $(m, n) = 1$. Then $\mathbb{Z}mn = \mathbb{Z}m \times \mathbb{Z}n$
 $2 = 2 m n \in \mathbb{N}$ gid $(m, n) = 1$. Then $\mathbb{Z}mn = \mathbb{Z}m \times \mathbb{Z}n$
 $2 = 2 m n \in \mathbb{N}$ gid $(m, n) = 1$. Then $\mathbb{Z}mn = \mathbb{Z}m \times \mathbb{Z}n$
 $2 = 2 m n \in \mathbb{N}$ gid $(m, n) = 1$. Then $\mathbb{Z}mn = \mathbb{Z}m \times \mathbb{Z}n$
 $2 = 2 m n \in \mathbb{N}$ gid $(m, n) = 1$. Then $\mathbb{Z}mn = \mathbb{Z}m \times \mathbb{Z}n$
 $\mathbb{Z}mn \in \mathbb{N}$ for \mathbb{Z}^m . $\mathbb{Z}mn = \mathbb{Z}m \times \mathbb{Z}n$
 $\mathbb{Z}mn = \mathbb{Z}mn = \mathbb{Z}mn \times \mathbb{Z}n$
 $\mathbb{Z}mn = \mathbb{Z}mn \times \mathbb{Z}n$
 $\mathbb{Z}mn = \mathbb{Z}mn = \mathbb{Z}mn \times \mathbb{Z}n$
 $\mathbb{Z}mn = \mathbb{Z}mn \times \mathbb{Z}n$
 $\mathbb{Z}mn$

- prop 8.16
2f
$$P$$
 is a ring $|P|=p$ ($p \in prime$). Then $P \cong \mathbb{Z}p$
proof: Define $Q: \mathbb{Z}p \rightarrow P$. $Q(\mathbb{Z}k]) = k \cdot |k|$
 $\therefore P$ is an additive gp $|P|=p$
 $\therefore By$ Lagrange than $Q(|p)=1$ or p .

$$|I_{P} \neq 0 \quad 0 \mid I_{P} \rangle = p.$$

$$|K-m| \cdot I_{E} = 0$$

$$|K-m| \cdot$$

- Wedderburns Little Theorem
 Finite division ring is a field.
 Zero divisor
 Let P# for be a ring. For <u>o# a ∈ P</u>.
 a is a zero divisor if ∃ o# b ∈ R. s.t <u>ab=0</u>
 ep. [0 0] is a zero divisor in M2(R)
 - te Motrix p. By TARREF J Ste Ef I dentity motive in the its zero divisor.

- prop 9.1
Given a ring
$$\mathcal{R}$$
. TFAE:
1) 2f $ab=0$ in \mathcal{R} , then $a=0$ or $b=0$
2) 2f $ab=ac$ in \mathcal{R} . $a\neq 0$. then $b=c$.
3) 2f $ba=ca$ in \mathcal{R} . $a\neq 0$ then $b=c$
3) 2f $ba=ca$ in \mathcal{R} . $a\neq 0$ then $b=c$
proof:
1) $\Rightarrow 2$) Let $ab=ac$ $a\neq 0$. $\Rightarrow a(b-c)=0$.
 $i'a\neq 0$ $i'\cdot b=c$
2) $\Rightarrow i$) Let $ab=0$ in \mathcal{R} .
 $cae i : a=0$ we are done
 $cae i : ab=0 = a \cdot 0 \Rightarrow b=0$ done
1) $\Leftrightarrow 33$ FLZE

- integral domain A commutative rig $P \neq \{0\}$ is integral domain if it has no zero divison i.e. $ab=0 \implies a=0$ or b=0

ex. 2f p is a prime. then plab

$$\Rightarrow$$
 pla or plb.
i.e [a][b]=[0] in Zp \Rightarrow [a]=0 or [b]=0
Thus Zp is an integral domain.
However. $n = ab(1 \le a, b \le n) \Rightarrow$ [a][b]=[0] ([a] ≠ [0] [b] ≠ [0])
Thus Zn is an integral domain \iff n is prime
 $=$ prop 9.2
Every field is an integral domain. \Rightarrow $ab=0 \Rightarrow a=0$ or $b=0$
prof. Lot $ab=0$ in a field R .
We wonkt to show $a=0$ or $b=0$
 $case 1:$ If $a=0$, then we are done.
 $case 2:$ if $a\neq0$ then $a^{-}ab=b=a^{-}0 \Rightarrow b=0$
Thus, P is an integral domain

proof: Let
$$P$$
 be an ID . $a \in P$ $a \neq D$.
Consider the map $O: P \Rightarrow P$ defined by $O(r) = ar$
 $\therefore R$ is an $I.D.$ $ar = as$ $a \neq D$
 $\therefore r = S$
 $\therefore 0$ is injective.
In particular, $\exists b \in P$ set $ab = 1$.
 $\therefore R$ is commutative.
 $\therefore ab = 1 = ba$ i.e. a is a unit
 $\therefore P$ is a field.

X Let R be an ID with h(P) = p. a prime For a, b \in R. we have $(a+b)^{p} = a^{p} + \binom{p}{1} a^{p+1}b + \dots + \lfloor \frac{p}{p-1} ab^{p+1} + b^{p}$ $\therefore p$ is a prime $p \mid \binom{p}{1}$ for all $1 \le i \le (p-1)$ $\therefore h(P) = p$ $\therefore (a+b)^{p} = a^{p} + b^{p}$ $\Rightarrow \frac{p!}{i!(p-i)!}$

9.2 Prime ideals & Maximal Ideals
- def. prime ideal
Let P be a commutative ring. abiba
An ideal P + P of P is a prime ideal
if every r.SEP satisfy
$$rSEP$$
. Then rEP or SEP
* Let 1 be a prime. $ab \in \mathbb{Z}$.
Then plab. \Rightarrow pla or plb.
HDDJ $ab \in p\mathbb{Z} \Rightarrow a \in p\mathbb{Z}$ $b \in p\mathbb{Z}$ \Rightarrow prime ideal
ex. § 03 is a prime ideal of \mathbb{Z} $ab : \infty \Rightarrow a = b = \infty$
 \mathbb{Z} . For nt N. n = 2.
 $n\mathbb{Z}$ is a prime ideal of \mathbb{Z} \Rightarrow n is a prime

- prop 9.5.
if
$$P$$
 is commutative ring, $vs=sy \in P$.
then an ideal p of P is a prime ideal $\Leftrightarrow P/P$ is int domain
prof: $P \& P/P = ideal of P$.
 $P = ideal of$

- maximal ideal

Let
$$R$$
 be a commutative ring.
An ideal $M \neq R$ of R is a maximal ideal if whenever A is an ideal.
s.t. $M \subseteq A \subseteq R$. then $A = M$ or $A = R$.

ex. If
$$r \notin M$$
, then the ideal $< r > + M = R$. if M is noximal
ex. Zro in maximum ideal : $Z_2 \cdot Z_1$

- prop 9.6
If R is a commutative ring, then an ideal M of R is a maximal ideal

$$\iff P/M$$
 is a field
prof:::P \And P/M is a commutative ring,
.:.R/M \neq 503 \iff 0+ M \neq 1+M
 \iff 1 \notin M
 \implies 1 \notin M
 \implies $M \neq R$. now \And prime ideal : M \neq R
Also for rER, rate that $v \notin M \iff r+M \neq 0+M$
M is a maximal ideal
 $\iff (r>+M = R) = fr any r \notin M$
 \iff 1 \notin cr>+M = R fr any r \notin M
 \iff 1 \notin cr>+M = R fr any r \notin M
 \iff 1 \notin cr>+M for any r \notin M
 \iff for any r \notin M, \exists r+M \in R/M c.t. $(r+M)(s+M) = H M$
 \iff R/M is a field.

ex. Consider the ideal
$$(a^{2}+1)$$
 in the ring $Z[x]$
The map $0: Z[x] \rightarrow Z[i]$ defined by:
 $\theta(f(x)) = f(i)$ is surjective since $0(a+bx) = a+b^{i}$
Also Ker $\theta = (x^{2}+1)$.
By let IM them. $Z[x]/(x^{2}+1) \cong Z[i]$
 $Z[i]$ is an ID - but not a field.
 \therefore the ideal $(a^{2}+1)$ is a prime but not maximal.
 $Nu^{-1} = 1$
neximal ideal : $P/M \neq field$ commutative division ring
max prime field $RP \neq ID$

prime ideal : & not domain abio => aio or bio

9.3 Fields of Fractions
We recall that every subming of a field is an ID
The "converse" also hold, every integral domain R is isomorphic to a
submig of a field P.
Let R be an ID.
$$P=R \setminus \{0\}^2$$
.
Consider the set $X=R \times D = f(r,s)$: reR. sep g .
We say $(r,s) = (r_1, s_1)$ on $X \iff rs_1 = r_1 S$
In particular is $(r, s) = (r_1, s_1)$
 $> (r, s) = (r_1, s_1) \implies (r_1, s_1) = (r, s)$
 $> (r, s) = (r_1, s_1) \implies (r_1, s_1) = (r_1, s_2)$
 $> (r_1, s_1) = (r_1, s_2)$
 $> (r_1, s_2) = (r_2, s_3)$

- frontion
$$\frac{Y}{5}$$

Motivated by the case $R = Z$. We define the fraction $\frac{Y}{5}$ to be the equivalence class $[C(r, S)]$ of the pair $(r, S) \in X$.
Let F denote the set of all these fractions. i.e.
 $F = \{\frac{Y}{5} : r \in P. S \in D\}^2 = \{\frac{Y}{5} : r.S \in P. S \neq 0\}$

- addition & multiplication of P

$$\frac{V}{S} + \frac{V_{1}}{S_{1}} = \frac{VS_{1} + V_{1}S}{SS_{1}}$$

$$\frac{V}{S} - \frac{V_{1}}{S_{1}} = \frac{VV_{1}}{SS_{1}}$$
(SS1, VS1+V_{1}S, VV1 are elements of P)

- Then 9.8.
Let
$$\mathcal{R}$$
 be an ID.
Then \exists a field F consisting of fractions $\frac{r}{5}$ with $r.s \in R$. $s \neq 0$.
By identifying $r = \frac{r}{f}$ for all $r \in R$.
proof:
Note that $s \leq r \neq 0$. (Since R is an ID and thus these operations
are well-defined.
Then one can show :
 F becomes a field with the zero being $\hat{\tau}$. unity being $\hat{\tau}$.
Negotion $\frac{r}{5}$ is $\frac{-r}{5}$.
Moreover, if $\frac{r}{5} \neq 0$ in F , then $r \neq 0$. $\Rightarrow \frac{s}{7} \in P$.
Then we have $\frac{r}{5} \cdot \frac{s}{7} = \frac{rs}{5r} = 1 \in F$
In addition, we have $R \cong R'$. $R' = \frac{r}{5} + \frac{r}{5} + \frac{r}{5} = F$

10. Polynomial Pings
10.1. Polynomials
- Polynomial in x over R
Let R be a ring, and x be a variable.

$$P[x] = \hat{s} f(x) = a + a_1 x + \dots + a_m x^m : m \in N \cup \hat{s} \circ \hat{g}$$
 a: $e_R (o \in i \in m)$ }
Such fix is polynomial in x over R.
 $\hat{x} f(x) = o \implies a_0 = \dots = o$. $\Rightarrow dy o = -\infty$

- Addition & multiplication on
$$RTX]$$

Let $f(x) = a_0 + a_1 x + \dots + a_m x^m \in RTX]$
 $g(x) = b_0 + b_1 x + \dots + b_n x^n \in RTX]$ with $m \le n$.
Then we write $a_0 = 0$ for $m + 1 \le i \le n$.
Addition on $PTX]$: $f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$
Multiplicatum on RTX : $f(x) \cdot g(x) = (a_0 + a_1 x + \dots + a_m x^m)(b_0 + b_1 x + \dots + b_n x^n)$
 $= a_0 + b_0 + (a_1 b_0 + a_0 b_0)x + \dots + a_m b_n x^{n+m}$
 $= c_0 + c_1 x + \dots + c_m + x^{m+n}$ $c_i = \sum_{k=0}^{i} a_k b_{i+k}$

$$i \cdot f(x)g(x) = g(x)f(x) \quad \mathbb{E}[x] \subseteq \mathbb{E}[R(x]).$$
To show the other inclusion, if $f(x) = \sum_{i=0}^{M} a_i x^i \in \mathbb{E}[P(x])$
then $f(x) \cdot b = b \cdot f(x) \quad \forall b \in \mathbb{R}.$

$$\Rightarrow a_i b = ba_i \quad v \in i \leq m$$

$$\Rightarrow a_i \in \mathbb{E}. \quad \mathbb{E}[P(x]) \subseteq \mathbb{E}[x]$$

-prop 10.2
Let R be an ID. Then
i)
$$P[x]$$
 is an ID.
i) $If f \neq 0$. $g \neq 0$ in R[x]. Then deg (fg) = deg (f) + deg (g)
i) The units in $P[x]$ are R^* . The units in R.
proof: 2) Suppose $f(x) \neq 0$ $g(x) \neq 0$ are polynomials in $P[x]$.
 $f(x)=a \circ + \cdots + a_m x^m$ $g(x)=b \circ + \cdots + b_n x^n$. $a_m \neq 0 \neq b_n$
Then $fg(x)=(a_m b_n)x^{m+n} + \cdots + a_0 b_0$.
 $\therefore R$ is an ID. $a_m b_n \neq 0$ $f(x)g(x) \neq 0$
 $\therefore P[x]$ is an IP.
 $\therefore deg (fg) = deg (f) + deg (g)$

>> Let
$$u(x) \in P(tx)$$
 be a unit with the inverse $v(x)$
: $u(x) \cdot v(x) \geq 1$... $deg \ u \neq deg \ v \geq 0$ $u(x) \neq 0$ $v(x) \neq 0$
: $deg \ u \geq 0$ $deg \ v \geq 0$
... $deg \ u \geq 0 = deg \ v$.
Thus $u(x) \cdot v(x)$ are units in P , $(P(x))^* = R^*$

- * In $\mathbb{Z}_{Y}[x]$, $2x \cdot 2x = 4x^{2} = 0$. Thus deg $(2x) + deg (2x) \neq deg (2x \cdot 2x)$ \therefore The product formula in prop 10.2 only applies when R is an ID.
- * To extend. the product formula in prop 10.2 to 0.We define dy $(0) = \pm \infty$.

- prop 10.3
Let F be a field.
$$f(x)$$
. $g(x) \cdot h(x) \in F(x)$
1) $f(x) | g(x) \cdot g(x) | h(x) \Rightarrow f(x) | h(x)$
1) $f(x) | g(x) \cdot f(x) | h(x) \Rightarrow f(x) | (gu + hv)(x) for u(x) \cdot v(x) \in F(x)$

- Division algorithm.
Let F be a field from gue give Fier with from the from the ensist unique give.
$$r(x) \in F(x) = t$$
.
 $g(x) = g(x) f(x) + r(x)$ with dy $r \leq deg f$.
A this includes the case for $r = 0$. (1941 by fr dy $0 = -\infty$)
prof. Prove by induction:
let $m = dy$ $n = dy$ g.
If $n \leq m$. then $g(x) = 0$ from $+ g(x)$
Suppose $n \geq m$. and the holds for all $g(x) \in F(x)$ with dy $g = n$.
Write $f(n) = a_0 + a_0 + \cdots + a_m x^m$ $a_m \neq 0$.
 $g(x) = b_0 + b_1 + \cdots + b_n x^n$
if $f(x) = a_0 + a_0 + \cdots + a_m x^m}$ $a_m \neq 0$.
 $g(x) = b_0 + b_1 + \cdots + b_n x^n$
if $f(x) = g(x) - b_n a_n + a_{n+1} + f(x) = (b_n x^n + b_{n+1} x^{n+1} + \cdots + a_n) = 0 x^n + (b_{n+1} x^{n+1} + \cdots + b_n) - b_n a_n^{-1} x^{n-m} (a_m x^m + a_m + x^{-1} + \cdots + a_n) = 0 x^n + (b_{n+1} x^{n+1} + \cdots + b_n) - b_n a_n^{-1} x^{n-m}$
if $g(x) = g(x) - b_n a_n + a_{n+1} + \cdots + b_n) - b_n a_n^{-1} x^{n-m} (a_m x^m + a_m + x^{-1} + \cdots + a_n) = 0 x^n + (b_{n+1} x^{n+1} + \cdots + a_n) x^{n-1} + \cdots$
if $dg(g(-n) - b_n a_n + a_{n+1} + \cdots + b_n) - b_n a_n^{-1} + x^{n-m} (a_m x^m + a_m + x^{-1} + \cdots + a_n) = 0 x^n + (b_{n+1} x^{n-1} + b_{n+1} + b_{n-1}) x^{n-1} + \cdots$
if $dg(g(-n) - b_n a_n + a_{n+1} + \cdots + b_n) - b_n a_n^{-1} x^{n-m} (a_m x^m + a_m + x^{-1} + \cdots + a_n) = 0 x^n + (b_{n+1} x^{n-1} + b_n) - (f(a_n^2) + (b_n^2) + (b_n^2) + f(a_n^2) + f(a_$

- prop 10.6
Let F be a field fix give Fix with
$$f(x)\neq 0$$
 give $\neq 0$
Then there exists $d(x) \in F(x)$ which satisfies the following:
1) $d(x)$ is monic $f(x) \notin F(x)$ which satisfies the following:
2) $d(x) | f(x) \quad d(x) | g(x)$
3) $d(x) | f(x) \quad d(x) | g(x) \Rightarrow e(x) | d(x)$
4) $d(x) = u(x) f(x) + v(x) g(x)$ for some $u(x) \cdot v(x) \in F(x)$.
3) $d(x) | d(x) \otimes d(x) = solis f(x)$ the above conditions.
3) $d(x) | d(x) \otimes d(x) | d(x) = both monic$
3) $d(x) | d(x) = d(x) | d(x) = both monic$
3) $d(x) = d(x) \otimes prop 10.4$.
Typedest commute divisor of $f(x)$ and $g(x) = 34F d(x) = g(d(f(x), g(x))$

- irreduceble

Let F be a field, a poly
$$l(x) \neq 0$$
 in F[x] is irreducible
if deg $l \ge 1$, and whenever $l(x) = l_1(x) l_2(x)$ in F[x]
deg $l_1 = 0$ or deg $l_2 = 0$

X Let
$$A \neq \{0\}$$
 be an ideal of $F[x]$.
by prop 10 ? $A = \langle h(x) \rangle$ for a unique monic poly $h(x) \in F[x]$.
Suppose dy $h=m \geq 1$. Consider the quotient my $R = F[x]/A$.
Thus $R = \{\overline{f}(x) = f(x) + A : f(x) \in F[x]\}$?
 $t = \overline{x} = x + A$. $f(x) = q(x)h(x) + r(x)$
By division dynithm, $R = \{\overline{a}(x) + \overline{a}(x) + r(x) + \overline{a}(x-1)\}^{m-1} = a) \in F$?
Consider the map $0: F \Rightarrow R$ given by $D(x) = \overline{a} = a + A$.
 $\therefore 0$ is not the zero map. Ker 0 is an ideal of F
 $\therefore ker 0 = \{0\}$ $\therefore 0$ is a $1-1$ ming HM
 $\therefore F \equiv 0(F)$
 \therefore by ideal fying F with $U(F)$. $R = \{a_0 + a_1 + \dots + a_{m-1}\}^{m-1}$: $a \ge F^2$
 $In R$. $\alpha + a_1 + \dots + a_{m-1}$ $t^{m-1} = b_0 + b_1 + \dots + b_{m-1}$ t^{m-1}

ex. Since
$$\operatorname{Pital}/\operatorname{ex}^{++1} = \operatorname{C}$$
 which is a field.
The poly $x^{+}+1$ is incl in Pital .
poof:
(1) \Rightarrow (1) A field is an W.
(1) \Rightarrow (1) A field is an $f(w) = f(w) + A = 0 + A$ is $F(x) / A$.
(1) \Rightarrow (1) A field $f(x) + A = 0 + A$ is $g(w) + A = 0 + A$.
(1) \Rightarrow (1) A field $f(x) + A = 0 + A$ is $g(w) + A = 0 + A$.
(2) \Rightarrow (1) Note that $F(x) / A$ is a commutative rig
Thus to show A is a field, it affices to show that are given and the field $f(w) + A = 0 + A$.
(2) \Rightarrow (1) Note that $F(x) / A$ is a commutative rig
Thus to show A is a field, it affices to show that are given and the field $f(w) + A + A$. In $F(x) / A$.
 \Rightarrow (1) \Rightarrow (1)

ex. Since $x^2 + x + 1$ has no root in \mathbb{Z}_2 , it is irred in $\mathbb{Z}_2 [x]$. Thus $\mathbb{Z}_2 [x]/(x^2 + x + 1) = \frac{1}{2} a + bt$, $a, b \in \mathbb{Z}_2$. $t^2 + t + 1 = 0\frac{3}{2}$ is a field of 4 elements

Analys, 3 between Z & FIt]		
	Z	F[x]
elements	M	f(x)
Size	m	deg f
umts	§±13	F*
	$\mathbb{Z} \setminus \{0\} / (\pm 1) \cong \mathbb{N}$	LFExJ\{0})/F* ≅ fmonic poly}
unique	$m = \pm p_1^{\alpha_1} \cdots p_m^{\alpha_m}$	$f: c l_1^{\alpha} \cdots l_r^{\alpha} c t F^{\alpha}$
factorization	p: prime	li=li(t)=mumic irred.
ideals	<n> (unique if nEN)</n>	<h(x)> lunique if h(a) is monic)</h(x)>
	Z/cn> is a field <>> n is prime	FERJ/chixo> is a field hix is imed
	1	1