



































































































1 Groups

1 1 Notations

numbers N z
rational Tpl a stzif int

module n

matrices For ne N an axn matrix over R is an nxn array

A ta.j figs Iii with anger Kijen
addition ATB aitby
multiplication AB Icij Cj Éaikbly

1 2 Groups

def Group

Let G be a set and be an keratin on GxG we say G Gi
is a group if it satisfies
is Closure if a b EG then at b EG

Associativity if a biceG then at btc Lax b c

3 Identity Fe EG sit axe a e a for all atty
41 Inverse t at G Ibt G sit at b e b a b inverse of a

def abeliangroup 38ha
G is abelian if axb baa for all a beg

us The identity of G is unique

2 The inverse of a is uniqueiii

proof cis if e er are both identities then a enter es






































































































ex Theset Z t Q t CR t 0 t all abelion groups
where the additive identity is 0 and the additive inverse of an
element r is L r

For a set S let s denote the subset of S containing all
elements with multiplicative inverse Then Cat Rt E a

are abelian groups

ex Theset Mna t is an abelian group
where the additiveidentity is 0

andtheadditiveinverse ofM Lang is M L any
ThesetMn4127 isnotan abeliangroupsince notall matrix is invertible

ex Let G H begroups Their direct product is theset GxH with

component wise operation definedbyLg hi g he gga htithe
GxH is a group identity Lea ex inverse g h gt hi
By induction Gi Ga Gn aregroups G xGox xGn is a group

Notation Given
group G g gr eG g gu ggu identity by 1

inverseofg g
define g g g g

n

g go l

prop 1.2 Let G be a group g h eG we have

it g t g
in ight hgt
137 g gm gam for all n.me Z

14 gum gum for all n me21
proof in glitch'gt geht gt ggt lighting

gun gnh 7 EE matrix

d hen






































































































prop1.3 Let G be agroup andgheG Then

111Theysatisfy left right cancellation morepurely

gh gf h f
hg fg hit

in Given a b t G.az b ya b have gettin for xy eG
proof in gh gf

ggh ggf by left cancellation
h f

iz let atb ax acatb ant b eb

if u is another solution then an b ax u x

similarly y bat is also a unique
solution






































































































1.3 Symmetric Groups

g
by A

Given a non empty setof L a permutation of L is a bijectionMY j we at ya permutations of his dented's

ex Consider 2 1 2,3 which has six different permutations

is D is
Yelement ath

r 9753552,33 with ogi 1 0823 3 833 2

To consider theorder ofgeneral Sn for re Sn we have n choicesfor rel

def symmetric group Sn

Thepermutation ofset X form groupSx If X 1 n n n

WecanwriteSn instead ofSx
Sn is symmetricgroup setofallpermutations of n elements En

prop i 4 Int Y'met 8T Isn't agroupwith n elements

Given T.IE Su we can compose them toget a thirdelement re
where re i 2 n 1,2 n X H Jetix

Sinceboth r e are bijection sois re

ex re y 3 I 2 11 3 9
OIL1 TIED 0 27 4
TILL TLE D r 147 2

TL I 2 3 4
4 2 3 1

Er s Y 4 re er

def






































































































The identitypermutation E is defined as Eca a ta t i im

Thenfor any reSn we have re r Er

h

www.y.my y
Finally for re Su Since it is a bijection thereexist a uniquebijectionFed
Hx y rly x

o r rot E

ex theinverse r ie 3 I 5 is rt 3 Y 3 Ya

prop 1.3 D T T t sa ret Sn

y egg
rep re M HAZI associativity

3 There exist EESu sit r E r Er

4 U rt Sn I t ESn sit 0 T pot E

Sn is a group symmetric groupof deg n

I Writedownall the rotations and reflectionof an equilateral triangle
Bibi represent element in a permutation in a cycle

F sa ft g'd I cyclesaredisjoint iftheyhavenonumbersin common

r can be composed to 4cycles 1 1 372 4 6 1 98 110

theorem i6 Cycle decomposition Theorem

If resn with rte Then r is a product of disjoint cycles of length
at least 2 Ycydeyinb3BAzEfrgE inB At cycley
Thefactorication is unique up to the

orderoffactors
Sn y inYAYpermutation That Its permutation in Sun byfixing thenumber ntl
1 2 3 1 v 3 equivalent to 11 2 3 8 11 2 3 42








































































































14 Cayley Tables

def Cayley Table

GivenmyEG theproduct xy is the entry of thetable in therowcorresponding
to x and the column corresponding toy Such a table is

called
Cayley Table

ep Zz t

Ej z Hayleytable symmetric

E Ey

LE
I 0 I 1

y
I t y
I T By BEabelian

Cancellation Rule
the entry in each row column are all

def isomorphic AFA I

label Cayley tablepinindex HEREATtable tf FAA 1922Rain

ep k181837 To 4 FF ED 211 is CayleyTableTHEA's

isomorphic 21 I 212

def Cyclic Group Cn Atpowerinstant
Thecyclicgroup of order n is Cn i a a an withan l and

a a ant distinct

gigon a an 1 generator ofCn

Cayley tableofCn

her






































































































prop1.14 Let G be a isomorphism group Then

1 161 1 G E I

161 2 G E G

3 161 3 G E G

4 161 4 G E G or G EKy E Gx G

proof 1 161 1 G I

2 191 2 G I g g 1
Cayleythe G 9

GE Gg g 9
3 191 3 G 1 g h lg 1 htt g h

Cayley table G i g h

g h Iq n i GE G

4 141 4 G i f g h Clifg hnotequalto
eachother

Cayley tableofG G f g h

Itf Sgt t
ByCancellationPale gftg f i gfl or gf h
case i gfl
G i f g hi i t g h d Ky
f f h i g

ing4th
cases gf h 14
G i f g h equivalent t
i I t g h

f f tt t ing sh j ftp.fstfI g t it tight
f g a






































































































h h g f n f f f

ai s
It

44

ProveKu I GxG

Cre I K KE
Cz Cz LI boxing
Cuca I D Lg 1 Ll h Lgh
lil lil Gil Lish g h

g 1 gin ight gin gsh
tbh ish Lg h 1,47 Lg h

gin g h 1934 g h ight






































































































2 Subgroups

21 Subgroup

def subgroup

Let Gbe agroup and HEG be a subset ofG

If H itself is a group then wesay it is a subgroupof G

SubgroupTest

Since G is agroupforhahah tH then hichubs chhuh

H is asubgroupofG MAFFIA O h hiEH hheen
BEE WeH

ep Let G be a group Then i G are subgroups ofG

ep Wehave a chainofgroups Z t ECQ t ECR t E se t

ep Stu R is a subgroup of Glu R
special lineargroupoforder n over R

Stn SLnUR MEMn412 defM I E GInYR

subgroup test O IEShu R
LetA BEStn R detCAB detLAdit433 1
Let At Stall detLA I I

Given a group G we definecentreofG tobeZ G ZEG g gaUge G
ECG G G is abelian centreI'melementElenaGur Tsubgp

Then HAK g eGigett andget is also a subgroupofG






































































































prop 2.2 Finite subgroup test

If H is a finite nonempty subset ofgroup G
then H is a subgroupofG In H is closed under its operation

proof obvious

Le For H 9 let heH
D H is closed under itsopertion

i h hi hi are all in H
H is finite
elements are not distinct h hmm

Bycancellation K l IEH
i huh ht hat ht eH

By subgroup test His subgroup ofG

prop 2 3 D I E Z G

y Z E ZIG YZE ZCG

tgEG Cyzig yleg yigz lgyleglyz
ZEZCG ZtEG geG Eg lg z agt get

ex consider 121 Since k tight I is a generator of Z t

similary t is a generator

But if let Il I cannot beobtained via scalar multiplication

Let G be a group g t G suppose I k 21 kto sit g
t t

thengrt g b A Ynez Assume Kao

By thewell ordering principle there exists a smallest possible integer n
sit g l

I






































































































2 2 Alternating Groups

def transposition

A transposition G eSn is a cycle ie o la b with a be is n atb

ep Considerpermutation I v4 5 tSs
Also thecomposition I 2 V 4 24 5 can becomputed as

Thus 42457 48
4842245

Also thefactorization into
transposition org

t

iIEi ifThin 2.3 Parity Theorem

of a permutation r has a factorizations 0 8 fr p Ms
where each Ni Mj is a transposition then r Simd3

def permutation

A permutation r is even or odd if it can bewritten as productof
an even Corodd number of transposition
ep I example 4 permutation r is odd HAZY subgpFATE
121134715 61224permutationEASYtransposition

bytheo 2.3 a permutation is either even or odd

Them 2.4 For nav letAndenote thesetof alleffttngtnsn.isAn identity

yanyAn is a subgroupofSna b tAn abtAn a
called Alternatinggroupofdegreen

b 1An In
An is a subgpof Sn

ep 17 LI 2 27 a LI 423 4 at L3 4 11 4
meal






































































































2.3 Orderofelement
Notation If G is a group andg eG

denote g gb k 213
x gm y g ecg mintz xyegmenecg

prop2.5 If G is a group goG then g is a subgroup ofG

def cyclicgroup generator

Let G be a group
andgoG cgs is the subgrpofG

generatedbyg

If G g for some geG then G is a cyclicgroup and

g agar of G

op
Consider 121 4 Note that I k 21 we canunite k k I
Thus 121 t I Similarly 121 t L 17 I k k cD

observe that In e21 with n t 1 there exist no k 21 sit fin l

Thus I I are only generators of LZ t

def order ofg lg
Let G be a group g e G

If u is thesmallest positiveintegerstg 1 then orderof g is n og n

if no such n exist then ghas infiniteorder eggpaygocg
o

prop t Let G be agp agent N ktz
is g l ul k
n g gm Kem mod a

3 g 1 ggo ight elements all distinct

I






































































































proof I E Let n qt qt Z

g got g 9 18 1
G Let n

qktr.oerckgngattr.gr I
ik is smallest

pros int g I n qk k n

i r can only be o

2 gt
m l by cancellationlaw
talk m eby us
i GEM land n

3 prove existence

for Ken k qntr I o ere n 1 gk greg
prove unique

ga g of a bent

gabso a b so
i a bar i a b

prop2.7 Let G be a gp g EG ago k 2
D go I ko
n gk gm km
3 Lg 1 g go

elements all distinct

proof D CE go
Ifgk1 Assume Kao

implies og is finite contradiction

a gagm gk
m t

k mo by 111






































































































prop 2.8 Let Gbe agp goG org n EN

if de N then oLgd find
d n ocgd L

proof Let n god di find god in d a

gd gotta sign
d

ocgd n

ushow n isthe smallest integer
Lgd 1 REN

0cg n n Idrc prop2.67
i dring qt Z

ya and q dir ng
i Ld ni I ni r

e Lgd 1

ep 097 10 d 2 org guy 5

e g g't g






































































































2.4 Cyclegroups

def Cyclicgroup
of G g for somegEG ThenG is a cyclic group

prop 9 Every cyclicgroup is
abelian

proof For a b tG we have a gm andbig forsome m n EZ
ab gmg gmtn gntmgn.gm.ba

The converseof prop2.9 is not the

ep The
Klein

groupKyE Gta is abelian but ke notcyclic

prop ato Everysubgroup of a cyclicgroup is cyclic
proof Let G cg becyclic and H be a subgroupofG

If H i then H i is cyclic

If it I then Igkett with kex n k 0

Hisgroup gteH
Assume beN Let me be thesmallest pros int sit gmEH
i get i gm EH

AJAYh H eG g Tgif high ikea

kmqtr Loe ram bydivisionalgorithm

i.gkgtmglgtslgmjatH.ioErem r ro

i mlk gleecgm H cgms

prop 2.11 LetG eg be a cyclicgroup withorg neN
Then G cgt a gallon 1

proof byprop2.8 oigb gd a.in

d d of f






































































































theo2.12 Fundamental theoremoffinite cyclic group
Let G g be a cyclic group oforder ne IN
1 H is a subgroup H yd for some din int n

Conversely KI n cgt is theuniquesubgroup ofGoforderk

proof as by prop 2.10 H is cyclic H cgm for some men
Let d godumn
Claim H Lgm Legs

dlm mtd ikea

gmgladagdjk gd
i H gm ecgds

Harm H cgd
i degodcmon Fxy ez s t d many
i ga g

many Lgm gu Ign IY ELgm
i cgd tagmy Fdi gpoforder I

i H gd G g cgksgallk.nl l

12 Byprop 2.8 the cyclic subgroupcgt is oforder godinto k
Toshow uniqueness let k be a subgroup of G which is

oforder kwith lol u
By us let K cgd with din
Byprop26 2.8 K lk 01yd Yd Id
d f k gt






































































































2.5 Noncyclicgroup

def subgroup of G generated by X

Let X be a nonempty subsetof a group G and let
X XH Xk Xmtm XiEX Kit21 m I

denote thesetofall products ofpowers of nonnecessarily distinct elementofX
I X E X and xk Xmky Xmkm X t e X

is a subgroup ofG containing X

ex The Klein 4 group Ky 1 a b c a b c 1 ab c

ca b a l b abbas
ex The symmetricgpof degrees

S E r r I er try theE E RE It Icantake a I 23
ELI 27

S L r I r T RI I r

T T Tak r Tr F r.tt i stay

def dihedralgroup Dn
for n 2 the dihedral group of order 2n is defined by
Dun I a ant b ba i bany whereany b aba b

a b a 1 b aba b
When n't ou n b DUEKy Db 53






































































































3 Normal Subgroup

311 Homomorphisms and Isomorphisms

def homomorphism

Let G H begps A mapping a G H is homomophism if
x Lab a a a Lib forall ab EG

To simplify notation Fit 2Lab L a dubs tabEG

ex consider thedeterminant map dit CGLn ca It At ditLA

i dntLAB dit A det43 mapping is HM

prop3.1

Let 2 G H be agp HM

Then I 2Leg EH

acg1 Ngs Agog
3 2cg 21g

t
AgEG KEZ

def isomorphism

Let G H begps Consider x G H

If t is HM x is bijective Then 2 is an isomorphism
050

Ponto Doneto one G H are isomorphic G E H

prop3.2

1 Theidentitymop
G G is an IM

u r G it is an IM theinverse map rt H G is also 2M

3 r G It Tilt K are LM thecompositemap to G K is also2M

I is an equivalent relation






































































































ex Let It r eIR r 03

Claim cA T is isomorphic to Let s

Define t Rit Rt by our er where e is theexponentialfin
theexponential map 112 At is bijection

Also r S ER outs ens er es ru pls

Thus r is IM CR t E Rt

ex Claim Ok t is not isomorphic to 107
Suppose that e Q t LOT is an IM
Then I is onto I qtQ sit tug L TgifTLE a e Q

it is a HM

i a tht TLE TLET É LCq3 2
contradicts thefact that a EQ
i such r doesn't exist CQ t at






































































































3.2 Cosets Lagrange's Theorem

def Left right coset
Let It be a subgroup G atG

the right cosetofH generated by a Ha ha he it

theleft cosetofH generated by a att ah he it

HI 1 114 at Ha at alt Since I EH

alt Ha are not subgroups ofG
Hat alt G abelian By Ha alt

Group G Subgroup N EG
UseN to make costs N g N gun
Docosts always form a group No
For costs act like agp
x y e xNILYN ie UNICYNS xyN

ep Do Dos I a a b ab a'by as b I ba ab
H I byeDo
leftcostsofH leftcostsofH
I H I by H I I by
a H a ab H a a aby
a H crab H a a ab






































































































prop3.3

Let it be a subgp of G a bEG

is Ha Hb ab th

Ha H at H LabAfb 1
a at Hb Ha Hb
3 either Ha Hb or Han Hb p
Thus the distinct rightcosts of it forms a partition ofG

proof a if Ha Hb then a l a E Ha Hb
i at hb for some heH abt heh

E abtGH
t then ha heat beHb
i Ha E Hb

Table H H is asubgp

t Lab15kbat
then hb hebat a E Ha

i Hb EHa
So Ha Hb

L2 Uf a cHb thenabt EH

by Ha Hb
b case1 Ha n Hb of obvious

cases Han Hb of
Ix than Hb
XEHa i Ha Ha by ina X eHb Hb Hx byus

SoHa Hx Hb
de






































































































def index

byprop 3.3 Gcanbe written as a disjoint union of night costsof it
index IG H distinctright left cosetofH in G

LagrangeTheorem

Let it be a subgroupof a finite groupG 1141 191 IG 43 74
MtG split into non overlapping leftcosets H g it got
ghi ghi g ight gigha

haha IFynthonoverlap in prop3.3

eachcosethas size141 d
Let K EG HI K cosets

i d ten d I n 1141 IG

proof summary 1 Pick a subgroupof G H
2 Cover G with cosets
3 Costs do not overlap

ex IG 323 17 19
divisorsof 323 1 17 19 323
possiblesubgporders 1 7 19 323

standard subgp G 161323 e Clee1 1

othersubgps order 17 or if 09224 The

ex IA41 12
divisorsof 12 1 2 3 4 6 12

ay order4 1 order6 0 ordernot






































































































Cor 3.5

17 G is afinite group goG org 1Gt
z G is a finitegp with 1Gt n tgEG get
ex For now with a 22 let It be thesetof multiplicative invertible

elements in Zn

Let theEuler's offunction fin denote theorder of Zn
i.e fun I k k e o l r in i godchin l

as a direct consequence of con3.5 we suppose that if a EZ with

godcan I then all mod n Euler's Theorem

If n p prime thenEuler's theorem implies Ferd's little theorem
whichstates that at I modp
By constructing Cayley's table we show that 161 2 GECz

IG 3 G E G
Cor 3.6

G is a group
with IG p prime GEcp cyclicgporderp

proof Let gear withg 1 bylov s s org p

g t.pt prime og p
i byprop 2 b Kg l og p So G Lg Elp

Cor 3.7
Let H K befinite subgroups of G
god11141 114 I Hak i

proof By prop at It n k is a subgpofH K

By Lagrange theorem IH 714 141 114114114

114714 god11141 114

ie Hnk i Hnk i

N nd b






































































































3.3 Normal Subgroup

If It is a subgroup of a group G gEG thengH Hg are not
always thesame

def normal s

Let it be a subgroupof G
If gH Hg IgtG then it is normal in G HOG

ex 91 A G G T G

ex The center ZLG of G
Z G Z EG Zg gzforallgoG is an abelian subgroupof G
Bydefinition ZLG s G

Everysubgroupof ZCG is normal in G

ex

512 normalsubgp

Iffy s coset

congruence
classes 21mods T T É J E

groupof costsQuotient
group 2 5

4 not a subgpof
adding cosets H521 3 52 4 52

3 512 9 i 12 7 2 3 8iii iii iii iii
mal






































































































Normality Test

Let it be a subgroup of G The following are equivalent

is Ho G

Dn gHgt EH tg cG BBA YUMA198s heHighgten
3 gHgt H AgEG

proof is 2 Let xEgHg Xghg forsome hell
By is ghegH Hg
gh hg forsome MEH

xghgt h.gg th th

gHgtEH

3 of g e G thenby 2 gHgt en en
BtgtEating is g ngEH
H EgHgt agang

Steiggt H

3 is gag tt gH ng

ex Let GmtÉItht mitigatingdeal e ta
for AGG BE It detLABAT detCA det B detLA

detLA I c
I

i ABAT EH AHAT EH DAEG

Bynormality test H AG i e Stuck sGluck






































































































LAILagrangethingigprops9

if H is a subgroup of G EG 113 2 then HoG

proof Let gEG

Ifg E H then G HUHg a disjoint union

T TG H 2

i G GEUHF
c disjointunion

Thus rig G H

similarly get Gl H
Thus Hg gH for allg e G ie H s G

ex Let An be the alternating group contained in Sn
i Sn An L

byprop3.9 Anos
Ah 2 Lagrange tha

ex Let Dan L a b an l b aba b be the dihedralgp
of order 2n
i I Don c a 3 g n

i byprop 3.9 a s Dun

Let H K besubgroup of a groupG
Theintersection Hnk is the largest subgroupofG contained in both H K

If there is a smallest subgroupof G containing both H K

HUK isthesmallest subset containing H K






































































































Lemma 3.10

Let H K besubgroups ofG TF A E

is HK is subgpof G
2 HK KH
3 Kit is subgpof G

2 D I 1 I E HK LkEHK

i chk Kh EKH Hk

forhk hit EHk
we have th tKH Hk thehaka
chkthnk hitch k hihikyle chhilkk eHk

BySubgptest HK is a subgp ofG

1 2 Iet thekit Since H K are subgpsof G we have h EH
and K'ok
HK is also a subgpofG wehave th ch't't th k
i KHEHk

of likeHk Hk is a subgpof G
hk Wh EHK KH Lik
Thus Lk ki hi e KH HKskit
HK KH






































































































prop 3.11

Let H K besubgroups of a gpG
D H oG v koG Hk Kit is a subgpof G
n H G n k o G HksG

proof 17 Assume Ho G

HK YHk YKH Kit

Bylemma 310 Hk KH is a subgroup of G

LetgoG hkenk
H TG KoG

i g chb g g chggbig
Ighg lgkg e Hk

i HKA G

def normalier Nah

Let It be a subgp of agpG The
normalierof H CNanti is

Nacho goG get Hg
HOG NGCH G
Natl Tat ghHg ing y g My my INGA Gin
EG H distinct subgp

Cor 3.12

Let H K besubgps of agp G KeNaut HK KH is a subgp ofG






































































































Than 3.13

Ho G and KsG satisfy Hnk 1 HKE 4x4

proof Let m n t IN gadlmin I

Let G be a cyclicgpof order mu G a

O a m n

Let 14 2an K am

1H Ola m IK KoLam n

1411kt Mn 1Gt
GE MxK
We only need to consider cydregp of prime

order

Claim1 if 140G and KsG satisfy Hnk i

thenhk kh then and KEK
provedaimi Consider x liketh hkh ft

KhlotekHk EH

i x hLKhKt EH
Similarly x Ek i xetink 913 hkhtft l hkakh
Since it a G bypop 3,11 HK is a subgroupofG
Claim 2 r is an 1M

Define r HXk Hk uh f hk then kek

prove claim 2 Let Ch k chink e Hxk ByClaim1 Ink the

rich k cha ki ohhhkla

hhkki
hkhile c ly dad
rich 6 rich kill

i r is a HM






































































































bydefof HK r is onto

a rich ki ohh kid hk hk
i hih kik c HAK I

i Lik l kik l l ie h h kik
i r is I to 1 Chainz holds

So HKEHXK

Cor3.14

Let G be a finitegroup H K J G Hnk i 1111114 191
Then GE HXK

proof HikoG i HE G 13111

By Lagrangethem 11141 IG
THNK I i god 141,1143 1

i 11461 1141114 G
size F HKEG
HKEHxK i Gem

Hk G






































































































4 Isomorphism Theorems

411Quotient Group

def multiplication
Let G be a gp k be a subgroupofG It is natural toask if we can make
thesetof rightcosts of k i e ka at G into agp
A natural way to define multiplication on thisset is Kakb Kab abeG CA

Note Ka Kai Kb Kb at a b b

i m orderfor H to makesense a necessary condition is

Ka ka KbKb Kab Kab
In this case themultiplication Kakb Kab is well defined

def quotientgp 1of G by K Glk

Let Ko G Thegp G k ofall cosets of K in G is called
the quotientgp of G by K

Y G G k given by Yuan Ka is cosetmap

identity K
inverseof X K is x K
K is normal subgpof G KSG

singlegroup
Theonly normal subgps ofG are e G G is singlesubgp

def Kernel Kevld
a G H is a HMgp Kernelof a Kerk geG i ang e






































































































def image ima
im 12 L G Leg g EG EH

if 2 is surjective Then ima H

def J

K Ker K 2 G Keim K 21kg7 29
kg kg ggiek

agg I

Leg sign
i 2 is oneto one and well defined
IT is onto

Lemma 4.1

Let K be a subgp G TAE
D KOG

a beG themultiplication Kakb Kab is welldefined

proof 11 cos Let Ka Ka Kb Kb
Thus aai cK bbtek

TogetKab kabi it need to show ablab t k
i koG i akatek
Thus ablabit ab bi ai albby at

albbi at aa acbb at Laa Ek
Kab Kab

2 LI If at G to show koG we need akatek forall Kek
Ka ka Kk KI

byus Kak Kak Ka i akatek KoG






































































































prop4.2

Let KoG Gk ka a EG teasetofcosetsofK
is Glk is a gpundertheoperation Kakb Kab

Themapping 4 G Gk given byYeas Ka is an ontoHM
31 EG KJ is finite IGykI EG KJ

1Gt is finite 1914 44
proof it by lemma 4.1 The operation is welldefinedandG K is closed under

theoperation
Y Kaki Ka KIKa
i Theidentityof G K is K K forall Ka Gtk
KaKat Ki Ka ka

i the inverseofKa is Kat
Kackbko kakis Kc eby associativity of G
G k is a group

us Y is dearly onto

Y la yab kaKb Kab YLab

Y is an onto HM

3 of IG KJ is finite then 1641 2Gif bydefofindex IG KJ
IGI is finite
19 14 IG i k IT






































































































prop 4.3

2 G H X is HM

is im ca is a subgp of H
Ker L T G

proof u g e G heKerca

ghg dig ach sign
Lig Leg's
I

i ghg le Ker k
i Ker'd TG

ep
Consider determinant map def GL 412 2117

Kerldet 82nA SLUR sGLn4R

ep sync s I if egg res

Keresgn An An is normal

G
tf

2 G H a homomorphism K Kerk

Y G Gtk coset
map isomorphismY

Gtk 2 Glk ima Icky 214cg 2g

h






































































































them4.4 First isomorphism Than

of a map 2 G It be a group Homomorphism
Then G Kera E ma

proof Let K Ker 2

i ko G Gtk is agp
Define 2 Gtk ima be 21kg L g Kg EGIK

Kg kg ggiek
agg I

aging
i I is welldefined A one to one A dearly at
ForgehtG
Ii kgKh Ickgh agh ng ah

Icky 242h
I I is GM in ima E G Kera

prop4.5

2 G It is a HM K Ker d

a function uniquely as 2 2 where 4 G G K is the cosetmap

2 2 LKg 2cg Y is onto I is one toone

G is a cyclicgp G g
a 2 G defined Len gk Antz x is onto

ofog D Kerk o by 1st LM G E 21 903 EZ

kernel 2 ne Z N modcogs03 G EZag
If G is cyclic G E Z or GE Zk whereK orderofG

b b nd






































































































Than4.6 2nd IM theorem

Let H K besubgps of G KoG
Then Hk is a subgpof G KoHK HAKIM HK KE H Hnk

proof KsG i HK is a subgp prop 3.11

HK KH KoHk
Consider themap x H HKK ah Kh

Thus 2 is a HM

If XEHK KH x Kh Then Kx KCKh Kh Nh
Thus 2 is onto

By prop3.3 Kera Shen KKK Shen her KAH

By 1stTMtheorem H HAKEHHK

Them4.7 3rd IM theorem

Let KEHEG begps with KoG HOG ThenMlk is Glk
proof Define a Glk G H byalky Hg KgEG

Note that if kg kg thenggtekEH
Hg Hg x is welldefined

It is clearthat a is onto Kerko kg ng H

kg get J H K

By ist 2M them CG KTH K G H






































































































5 Group Actions

5 I Cayley's Theorem

Cayley'sThin

Hafnitegefordern thenG is

Bowrphongjigopts
Everysubgp E a collection of permutations

proof Let G g guy Sg Gur permutationgp
proveSGE Sn

o G SG injectiveHM surjective whenHedycodomain to its image

Ma G G Mang ag atG gEG ytion MaeSa
r G So real Ma
1 HERERAMa RATE 1 I HM

ma Mb Maui Mba a b

onetffMaybMab Manby Malbg abg Mably
i By1st IM them GE im r SGESn

Sometimes we can find a smaller it on sit G is contained in Sm

ex Let it be a subgp of G IG in m co

X gilt gott gmt bethesetofall distinctleftcosetof it in G
For LEG define ta X X by Na lgH agh AghEX
Then ta is abijection

Da is a bijection Nat Sx c thepermutationgp ofX
Consider

map T G Sx definedby Tca Na
For a b e G Nab Nah I is HM

if at Kent then da is theidentity permutation
a H Na LH H i Ker TEH






































































































Thurs2 Extended Cayley'sTheorem

Let It be a gyp of a gpG with IG H m a o

of G has no normal subgp contained in Hexceptsig
then G is isomorphic to a subgpofSm 4 141Kent KE H
H hMo contain a normal subgp of G
G K ime

IGF limit

194 161 TCG in CA

IKKI

proof IX Gilt m Sx Sm

t a Sx Hm KentEH It limit
i By1st IMThem G Keitt I p
i Ker I E H KerrAG
i kent913 e is injective

i GE imt Sx E Sm






































































































Cor5.3

LetGbe a finitegp andp be
smallest prime sit p 1Gt

If H is a subpof G with IG H p then H s G
generalizationof prop397

G p put put piped
Gilt Ht p HOG

proof Let X be thesetof all distinct left wsets of It in G
Ix p SxE Sp

Lett G Sxe Spbe thegp HM
defined in theabove example

with K Ker te H

By the ist am thin GIIA.IEgig
SP 0406

G k is IM to a subgp ofSp
KEH if it ks k
a IG k1 74 it pk

ByLagrange them pk p klip D
i k1141 which divides IG andp is the

smallest prime dividing 1Gt
i
everyprime divisorof k mustbe p unless 4 1

Combining this with k p i this focus kl which implies K H

e H O G






































































































5.2 Group Actions

def left groupaction

Let G be a gp X be a nonemptyset

Acleft group actionofG onX is a mapping G xxx
La X tax sit D I X X VxEX

2 a b x Lab x Ha beG XeX

G acts onX

Let G be agp acting on a set X 9
For a bEG x y EX

By 1 2 ax by 15a x y
ax ay x y

ex If G is a gp Let G acts on itself i e X G

by ax ax at forall a X E G 1 x x t x

at b x a lb xb albxb at Lab x ab ab x

G acts on itself by conjugation

For a E G definera X X by race ax forall x EX

Then D Ja E Sx
n O G Sx givenby Dias ra is agp HM with

h

the gp HM 0 Gsx gives an equivalent defofgpactionof G onX

ofX G IGF n Ker0 1 then themap 0 G SG I Sn shows

that G is isomorphism to a subgp if Sn Cayley's than

I






































































































def orbit stabilier

Let Gbe agpacting on a setX and xox
orbitof X G x gaige G EX

stabilier of X Six geG ig x x E G

Prop 5.4

Let G be a gp action on a set X of x ex

Then 11 Six is a subgp ofG
as I a bijection from G x to gSix g eG

IG x G Six

proof it Since l x X we have le Six

Also if g he six then ugh x gch x g X x

g x g lgx lgg x l x X

Thus gh g e six

By Subgptest Six is a subgp of G

4 Consider themap Y G x Egs get defined by Ygx gs
gx hx chg x x 21s h E g Is

ng es hagEefWENHAM
gs hs well definedthaEstooutputFAR

Thus Y is well defined

Y is ckartyt.fr bijection
i I G x SgsgoG l G S






































































































Them5.5 Orbit Decomposition Than

Let G be a gp acting on a finiteset X to
Xf x EX ax x HAGG XeXt E IG x L

Let G Xi G xu Gxn denote distinct nonsingleton orbits
i e 1G xu 1

Then 1 1141glFitEsenonsingleton Ii
proof Notethat for a bEG x y ex

ax by a Lbta x y
y e Gx
Gx Gy

i The 2 orbits are either disjoint or the same

which follows that the orbit form a disjointunion ofX
i Xt Xf IG x I
i XIXf contains all nonsingletons orbits which are disjoint

By prop5.4 1 1 1Xf Is IGail
IXfl E IG Sexit

ya y be a gp dog M B Td

zcG

Then Gf XEG gag x tgEG
xEG ga g UgEG which is centerofG

For XEG
six SgtG gxgt x g EG gx xg
Theset is called centralierofX and is denoted by Six Calx
In thiscase theorbit G x gxgt gag is conjugateclassofX






































































































Cor 5.6 Class equation

Let G be a finitegp and let gx.gt.geG gangt.geG
denote thedistinct nonsingleton conjugate classes

Then 161 ZLG E IG CGaxis

Lemma5.7

Let G be agp of
order
p acting on a finite set X of

Let Xf x EX a xx UaeG
Then IX IXfl modp
proof Ky Than 5.5

1 1 1Xfl EE IG Sais with IG Six I Kien

G Sexist divides 1Gt pm and IG S i 1

p EG suis forall i a Saxis 1891,1 IgpofGt IX IXfl Landp
ISxil1Gt 15 1 pm

Taken






































































































Them 5.8 Candy Than EttaSylow
Recall that as a consequence of Lagrange Thm

of agp G is finite g e G then org I Gt

Makin ith If m 1Gt Does G contain an element oforder m

Let p be a primeand G a finitegp
if pl 1Gt then G contains an element of orderp

proof Define X can ap at G as up
nap can ar ap it is uniquely defined
i Ifi Gkn We have IXI n 075874a Epn EFF

TptapAuniquelydeterminedpln 1 1 0 modp

i e for ktap Klan ap arts Aleta Ap as Ak

Let Xp bedefined as Thin 5.5
Then Lan apEXT a ap
i Li i 1 EXp i IXp 21
i 1 1 0 modp txt 71
i IXel p
i There exists at st la a EXE
which implies at 1

p is a prime a

i o ca p






































































































b SylowTheorem

f 1 P Groups

def p group
Let p eprime A group in which every element has order of a
non negative powerof p is a p group

Cor b 1 ylG p
Afinitegp G is a pgp 1Gt is a powerof p
proof G proveby contradiction IG ppit pan ka

p 1Gt i ByCandy's Them I an elementoforderp
G is not a p gp

E 1Gtp geG og ph og p an

Cor 6.2

1 pm

29 92
The center Z G of a non trivial finite pgp contains more than

proof Recall class equation Cov56 of G
161 1Z G I E IG Ca Xi where I G CGCX 1

G is a pgp
i by Cor6.1 IGI is a power ofp
by lemma 5.7 12061 1Gt Landp pl IZCal
I 12 G 21 Since I E Z G

1ZcalaplZMhasatleastptenets






































































































Lemma 6.3

of H is a p subgpof finitegpG
then INAH H IG HI Lmodp
the nomalizerofH Nat geGigHgt H C HoNach

proof Let X bethe setofallleftcosetsof H in G IX EG H

Let Hact on X by leftmultiplication
For XEG we have

xH e Xt Lx H xH then
xthx H H then
THX H
XENG H

I Xel is thenumber of costs xH with X ENGCH

IX I I NGCH H

Bylemma 5.7 INGCH H 1 1 1 1 EG H modp

Cor6.4

Let It be a p srbgpof a gp G
Zf p IG H then p I INGCH H and NGut H

proof p IG H
i Bylemma 6.3 TNG H 113 TG H D modp
t p I INGut H INGCH H 21 Since HENGLHS
i INGUt HT p
i NGCH H






































































































6 2 Sylow's Three Theorems

First SylowThan Fhm6.57

Then G contains a subgp of order p ti lei en

Every subgpofG oforderpicion is normal in some subgp oforderpit

proof Proveby induction

i I

i p11Gt by Cauchy's Thur

i G contains an element a oforder p ka l p
Suppose the statement holds forsome Kian

H is a subgp of G with orderpi
11411 1141MY pip pit
Then p IG H

ByCor 6.4 pl INGCH H Naut H p
By Then 5.8 NaLH H contains a subgp oforderp
Suchagpisof t Hi it where H is a subgp ofNatl containingH
i HONGCHI i HoHi
IHit IN FI pip pit

def Sylow p subgp ofG

g

A subgp P of agp G is said to be a Sylow p subgp of G if
P is a maximal pgp of G
i e PEH E G with H a pgp P H






































































































Cor6.6

Let G be agpoforder p m where
p eprime nel godcp.ms I

Let Hbeapsrbgpofa.PHis a Sylowp subgp a
1141 p Sylarp gp Rfi ispgp

Every Ife of a Sylow psubgp is a Sylow psubgp a x ax atEG
3 If there is Sylow p subgp P then P JG

Second Sylow Them Thin6.7

if it is a p subgp of a finitegpG and P is anySylowp subgpof
G thenthere exists g t G sit H egPg
In particular any 2 Sylow psubgps ofG are conjugate

proof Let X be thesetof all left costsof P inG
H act on X by left multiplication

By lemma 5.7 1 1 1 1 I G P modp
p t IG p If I 0

Thusthere exists gPtXf forsome gEG
gPext hypgP then

gthgP P then

gtHgEP
H e gHgt

If it is a Sylowp subgp
Then IHI IP IgPg't
i H gPg

d h






































































































Third SylowThan

Let G be a finite gp andpeprime pl1Gt
then thenumber of Sylow p subgps of G divides 1Gt and is of
theformkph for some KeINu 0

1Gt p ti put
Fatusylowgp

with order pit pot put

Suppose that G is agp with 1Gt p withgodcp m l

Let up be the number of Sylow p subgps of G

By the Third SylowThin we seethat upI p m up I lawdp
i ptup i nplm

proof ByThin6.7 the member of Sylow p subgp of G is thenumber

of Conjugate ofany one of them say P Thisnumber is G Naps
which is a divisorofG
Let X be a setofall sylowp subgps ofG
P acts on X by conjugation

Then de Xt gagt d for tget
Pe N aid

Both Pand I are Sylow p subgps ofG and NGill
in ByCor6b They are conjugate in NGLd

T OO NGLO
i thiscan onlyoccur if I P
i A P Xp P

n By Lemma 5.7 1 1 1Xe1 1 modp
i IX I kph for some KEIN U lo






































































































ex Claim every gp of order 15 is cyclic

no Sylow 3

Ns Sylow 5 As 3 Ns 1 mod5

Let G begpof order 15 3 5
up be the number of sylowp subgp ofG

By the third SylowThem n s and as 1 mods

Thus us 1 FAM Us 1

It follows that I only one Sylow 3 subgpandSylow 5 subgpof G
Thus P T G and Ps0 G
Consider IP APsl which divides 3 5

Thus IP MPs1 1 PsMPs 13 IPsPs1 15 1Gt
It follows G E Ps xPs I 213X Z E 215

d of of de






































































































ex There are 2 isomorphic classes of gps of order 4
Let G be agpof order 4 3.7
hp be thenumber of sylow p subgp ofG

Thus we have no 1 or 7 4 1
It follows that G has unique Sylow 7 subgp Pe
Note that P AG and P is cyclic Pi ex X l

Let it be a sylow 3 subgp
1141 3 H is cyclic H cy with y

3 1

t p o G in y y x of ieb
i i I mod7 i i 1 2 4

1 If i I then yxy
l x ie yx xy ThusG abelian GE 212

If 2 2 thenyxy x2 G x'y Oei b Jezyxyt x
3 if i 4 thenyxyt x y'xy2 yx4yt x x

y is also a generator of it Thusbe replacing

By replacing y byy we get back to case us It following thatthere

are 2 isomorphism classes of gps of order H






































































































7 Finite Abeliangroup

2.1 Primary Decomposition

Notation Let G be agp meZ We define G geG gm l

prop 1 I

Let G be an abeliangp Then G is a subgpofG
proof 1 1meGim

Letg heGm
i'G is abelian sigh gmhm

gleam
If geGim

g g
m Igm g EG

Bysubgptest Gim is a subgpofG

prop 2 2

Let G be a finite abeliangp with 1Gt mb godem k 1
Then 11 G I Gm xGk

n IG Em IG't't k

proof 17 G is abelian Gim'sG G s G

i godem k l 7 x yEZ sit mxtky I
Claim Gcm n G't i

proof if geG NG't thengm l g
g gritty gm gk I

Claim2 G Gun Get

proof ifgeG then 1 gmtgym guk
g'tG g EG






































































































g gritty g gk t GimGita

Combining Claim 1 2 by then 3.13 GEG x G

2 Let IG t m Igel k

By ti mk 1Gt in't
Claim god em K l

proof Suppose gedem.li 1

Thenthere exist a prime sit plan plk
ByCauchy's thin IgeGtk og p
plan gm ight ie gag
By s gegen n G i contradiction

i oug p i godcnn.kz l

i m Im'k godemk's l mln
Similarly talk
i nk n't i m m k k

Than 7.3 Primary Decomposition Than I General 14th
Let G be a finite abeliangp with 1Gt pi pi p pic are distinctprimes
Then 1 GI GP x G'pit's

a IGpi I pini i sick
ex Let 6 215

Then IG 12 22.3

G at 21 a4 1 1 5 8 123

G's a ez as13 91,3 9

ByThur 7.3 21,5 1.5 8 12 x 1 3 9






































































































7 v Structure Thanof Finite Abelian Groups
ByThin 2.3 a finiteabeliangp is isomorphic to a direct product of
finiteabeliangps of primepower order This is suffice to consider these

gps now

Recall I Gl p GE G
IG p GECpr or CpxCp

Q How about IG p p

prop 7.4

if G is a finite abelian pgp thatarsaysubgpoforderp
Then G is Lie
It is to if a finite abelian pgp G is not cyclic

then G has at least 2 subgps of orderp
proof Suppose Gtag

Then the quotientgroup Gleg is a nontrivial pgp
which contains

an element Z oforder p by Candy's Thm
In particular Z 1

Consider the cosetmop Tv G Go
LetXEG satisfy tux Z

aex's TuxP ZP XteLy
Thus XP y forsome mEY

easel If pfm
0cg pr for some rEIN

Byprop2 it olym oly
i y is of maximal order
i oXP co x I oly ocym 0UP Leads to contradiction






































































































I 7 P
case2 if plan Let mpk k 4

XP y
m

y
th

i G is abelian

xy
K K l

i Xy belongs to the oneandonly subgpoforder p Say4
Thecyclicgp ay contains a subgpof order p which must

bethe one and only H

i xykey which implies very
I Z tux I contradiction

so G ay

prop 7.5

Let G be a finite abelian pgp C be a cyclic subgpof maximal order
Then G contains a stgpB sit G CB Cn13913
Thus bythem3.13 we have GE CxB

proof

if IGI p we take G C 13 913 and the result follows

Supposethatthe result holds forallabeliangp of order p with new na

Consider 1Gt p
case If G C then by 13 913 theresult follows

cases if G C then G is not cyclic

Byprop7.4
Since C is cyclic byThu2.12 It contains exactly onesubgpof orderp
Thus there exist a subgp D ofG with ID p DEC
a Cnp113






































































































Consider cosetmap TL G GID

if weconsider Tye the restriction of TL on C
then Kev a u Cap 91

Thus by 1st 1M them ToCC EC

Let y be a generator of the cyclic gp C ie C y
TLC EC TLC LILY

By the assumption on C acc is acyclingpof GIDofmaximal order
IGA p

i

i byinductive hypothesis GIDcontains a subgp E sit GID TL C E

ECO RE i

Let B TLE ie ECB E

Claim1 G 43

proof Note that E is a subgp containing 913

We have Ti I 3 D E B

If X E G TucC TB TLC E GIP
i I n E C VEB sit TIX FLU TLLV

alxu v xu v EDE B
YVEB XUEB

Y B is abelian X uxutt CB
Claim 2 Ch B I

proof Let XE CAB

Then Tux E ICC N ECB

TheC ME

i

i Tux inCfp






































































































UP
in XED

i X ten D I

i X l

By Claim claim 2 the result follows by
induction

Them 76

Let G be a finite abelian pgp
Then G is isomorphic to a distinct product of cyclicgps
proof ByProp7.5 Thereexist a cyclicgpCp a subgpB of G s t GE C xD

i 11311 1Gt byLagrange Thm

i Bi is also a pgp
i ofB i by prop7.5 I a cyclic gp

Cr Bo St BECuxBr

Continue in this way toget cyclic gp a Okuntil weget Busy
forsomeKEIN i G E G x Cox xCk

Them7.7 Structure Thin of finite abeliangps 6

ofG is a finite abeliangp ThenG EUpix xXp p not necessarily distinct
where 21pm 121pini t E Cpi are cyclicgps of order pin kick
Thenumbers pi are uniquely determinedup to

their order

Than7.8 Invariant Factor Decomposition offinite abelian gp
Let G befiniteabeliangp
Then GEZn x xZar where nieN I ki er u l nilnili.tn

Co der f






































































































ex Consider an abelian gp G of order48
i 48 243
i bythin2.3 G is isomorphic to H 213 whereH is an abeliangpof

order

Theoptionsof H are Xu ZixZv Zixzi 215212212 ZZ 21221
Thus we have G E21521 E2148

G E ZI XXXZ E Za Zu

G E Zi XXI XZ E 214 2112

GE ZI 22 212213 22 212 2,2

GE Zz 212 212 22 21 I 212 2 212 216

THYgroupof order n KE always abelian
Faked cyclic Cn gig 1

ep Og 39 Not abelian order s us subgp

39 3 13 13 3 4 1 E 3rd SylowThn THEY Y
acydictage

093 85
abelian

85 5 17 god511 7 1






































































































8 Ring
8 1 Rings

def Ring R

Asetof R is a ring if it has 2 operations
addition4 multiplication c

sit R T is an abelian
gp

R satisfies closure associativity and identitypropertiesof agp
Ring properties

If R is a ring Then I a b CER
D atb tr
n at b bta
3 atLbtc atb to
4 I a ER sit ato a Ota o zeroofR5 I at R sit at ta o c a ta c a negative ofa6 ab a b EIR
7 alba ab c
8 I ieR s t a I a l a fat R l unityofIR9 acbtc abt ac cbtc a batca distribution law
10 If ab ba Then R is commutative

ex 21 Q R U are concentrative ring with zero 0 unity I

ex For me IN n 2 Mak is a ring using matrix addition multiplication

zero on matrix 0 identity matrix I

iCR is not a
gp

there is no left or right cancellation Jp ringMEEEEE

ep In 21 0 x o y ay
Given a ring R to distinguish the difference between multiples
in addition multiplication

For n t IN A EIR na at n ta c n
an a a cat FaÉ






































































































Recall for agpG.geG wehavegot and g g and g't g
Thus for addition o a o 1 a a C a a

For meIN Define L n a t a t ta ny afar90 1

If the multiplication inverse of a exist at act l ata

define a at

prop 8.1

Let R be a ring SER
1 if O is zero of R then o r r 0 0

2 C r S V L S rs

3 C r L S D

4 H m n E 21 Cmv us mn rs

def trivialring
A ring with only one element In this case Pto
If R is a ringwith R o i r r I Aver

i we have 140 Rnottrivial

ex Ri Rn berings We define componentwise operations on the product
Rix XRn as follows
1 Cr i rn t L Si i n Sn rats i ratSn

u Cri i rn Si i n Sn ris VnSn
One can check Rix Rn is a ring

zero OR Open 0 i i 0

unity le 112 vis rnSn

Thering Rix Rn are direct product of Ri Rn
def h of






































































































of
def characteristic ofR char

ofR is a ring define characteristic ofR in termsof orderof
Ir in additive gp 42 t

chap if 0412 nGIN inCR t finitegp
if 0 IR 00 in Rit infinitegp

For k 21 6.12 0 means Kro free
byprop8.1 K r kilo r k liz r

Thus KR 0 k 12 0

prop 8.2

D char NEIN KR 0 n k
u uh427 0 KRIO e ko

ex 21 Q IR A has characteristic O

For new n 2 ring Zn has characteristic n






































































































8 2 Subrings

off Subring
A subset S of a ring R is a subring if S is a ring itself with Is Ir

property cos as as 193 of a ring automatically satisfy
Thus to show S is a subring

Subring Test
1 IR E S

of sites then It I are all in S
If 2 holds then o s s e s t o t es

ex Wehave a chainof commutative rings
Z E Q e R E G

ex if R is aring the center ZLG of R is defined to be
ZCGI z ER ZV rZ AVERY

IR E ZCR

of s t E ZLR then for all r ER
s ti r sr tr us rt yes t
Cst r s Ltu s rt rest

Bysubring test Zaks is a subring of R

ex Let 21I c at bi a b e Z it I

Then one can show 21Li is a subring of A
called the ring of Gansian integer






































































































8 3 Ideals

Let R be a ring and A an additive subgp ofR
R t is abelian i AAR

Thus we have additivequotientgp
RIA rEA rER with rtA rta at A

prop8.3

Let 12be a ring and A an additive subgp of R
For r s t R We have

1 rt A st A r seA
2 rt A t s A rest A

3 OtA A o additive identity of RIA
47 Crea er A A additive inverse of A
5 KirtA fr A VKEZ

Since R is a ring it is natural toask if we could make121A to be a ring
A natural way to define multiplication in RIA is

rtA STA rst A tr SER M

We could have rtA v A s t A sitA with rtr Sts

Thus in order for ex to make sense a necessary
condition is

A v A stA sitA rst A vis ta

In this case rt A CstA is well defined

prop 8.4

Let A bea additive subgp of a ring 12 at A
define Ra Eva reRy aR far very
Thefollowing statements are equivalent






































































































he fi ng talement are egalent
D RaEA AREA for every at A
2 For r s e R themultiplication rtA sta rst A is

welldefined in RIA
proof D 2 if v A r A stA sitA Weneed to show rstA visitA

r r EA S S EA
i rs r s us ri s t his r s

V r St r S S E r r Rt RIS SD EA

byprop 8.3 17 rst A vis ta

2 1 Let r ER at A

byprop8.1 D rat A rt A at Al
L A OTA

Ota A

Thus ratA Pat A

def ideal

Anadditive subgp A of a ring R is an ideal ofRifAREA forevery a
This Aof R is an ideal of of A additivesubgp

For a b EA r on R Wehave ra art A a bEA

ex If R is a rig then 103 P are ideal

ex let R be commutative ring a i an ER
Consider set I generated by a an

i.e I a ar an 7 9 r a t t ruan ViER
Then I is ideal






































































































prop 8.5

Let A be an ideal of a ring12

4 IEAm.gg then A R

proof For every rt R

A is anideal IREA

i wehave r r Ip EA
REA E R Hence R A

prop 8.6

Let A be an ideal of a ring P
Then the additive quotientgpRIA is a ring with multiplication

rt A LstA rstA
Theunityof RIA is ItA

def quotient ring set of ra ar eA
Let A be an iced of a ring R
Thering RIA is a quotient ring of R byA

def principal ideal generated by a Haydn
Let R be a commutative

n'y A be an ideal of R

if A aR SatreRIRa for some at R
Then A is a principal ideal generated by a 397A ca

ladditive n a l

prop8.7

All ideals of21 are of the form as for some n t 21

if an t o ne IN Thenthe generator B iqulydem.de






































































































proof

Let A be an ideal of21
of A 903 Then A co

if A 03 choose a cA with a 0 and lat minimum
Clearly a EA
To prove another inclusion let be A

Bythedivision algorithm we haveb qatr q rez o e r lat

of rto
A is an ideal a b t A

i r b queA Metal contradicts
propertyof lat

So ro bqa i e be a which follows At
ca

2 Fr cu L YEEN

let AIGA s.t.ca qelRBA
cas a

then a ga for some 9.62
a ga for some qEZ

thus we have ala and a.la
thus a a






































































































8 4 Isomorphism Thins

def ring homomorphism

Let R S be rings
mapping O R S is a ring homomorphism if ta be R

1 O Latb OLa t DLb

OLab Deba
3 O Ip Is

ex The mapping k Ik for 21 to Zn is an onto ring HM
ex Zf R Ra be rings
theprojection Tui R X Ra R defined by Trierra r is an onto ring HM

Tur RixRara defined by Trierra r is an onto ring HM

prop 8.8

Let O R R is a ring HM and re R Then

1 OLOR Os

n Oc r Der
3 Ocker KOW HE EX
4 Ocr Our t ne N Ugo nonnegative

5 if WE112 I setof elementsof Rwhichhas a multiplicative inverse
Then Oink DLusk t k 26 Innit of R

def ring isomorphism

A mopping ofrings 0 Ross is a ring isomorphism of O is a

homomorphism and O is bijective

R S are isomorphic Whip RES

def d deal






































































































def Kernel image
Let 0 Rss be a ing um 1

ideal

Thekernel ofO is defined by Kero re R Our o ER

Theimageof O is definedby in O OR FIVE
subring

Group theorey Y Kero im O Baby additivesubgpsof R S
I Kb4 I

prop 8.9

Let O Ress be a ring HM Then

1 im U is a subgof s
a Kero is an Id of R

proof

D t inO O R is an additive subgpofs
i 0112 is closed undermultiplication

Is tOCR Is Our EOCR

if s DI r Sz OCru are in042 then s so Our Ours OWr E O42

imO is a subrig ofs

s kero is an additive subgp of R
i ra ar eKerO for all r e R at KevO

if v e R at KerO then Oura Ocu Ola Oir o o

Thus ra t Ker d if at art kero
Thus Kerd is an idealof R

h I






































































































Than 8co I 1st IM Thm

Let O R S be a ring HM

We have R KenO inO

proof Let A Kero
A is an ideal of R i RIA is a ring

Define thering map T RIA imo Fort A our t rtA RIA
A stA

r s EA Our s 0 Ocr D s

F is well defined and I I
i F is dearly onto F is a ring HM
i F is a ring IM and R Kerd E inO

prop 8.11

Let 12be a ring A B be subsets ofR
1 If A B be 2 subrings ofR 1a 1B Ir
Then A n B is a subring of R
ofA is a subring B is an ideal of R
Then AtB is a subring ofR

3 If A B be ideals ofR then At B is an ideal of R

Than 8.12 2nd 1M Thin

Let A be a subring 13 be an ideal of a ring R
Then AtB is a subring of B B is an ideal of AtB
AnB is an ideal of A CAB BE AAMB

d






































































































Than 8.13 3rd IM Thin

Let A B be ideals of a ringwith A EB
Then BIA is an ideal ofRIA andCRIA BIA ER B

te plz
god'm n I

b landm xox n Haz
x c mod n x m 41m21
igad mint

em
Them 8.14 CRT by six xean

ring Ideal an

Let A B beideals of R
1 ZfAtB R thenRYANB E RAX RIB

if AtB R ARB 03 Then R E RIA X RIB

proof 12 is a direct consequence of113
Thus it suffices to prove us

Define O R RIA XR B by Ocr rtA AB forall reR
Then O is a ring HM

To show d is onto Let LstA rtB ERA XB sit ER

AtB R
i IAEA beB sit atb l
Let resbtta
Then s r s sb ta sci b ta is t a EA
Thus stA rtA

PEE Our rtA rt B 1stA tt B

i imD RIA X R B

Kero AAB
i by1st IM thm R LAMB E R AXRIB

d






































































































Let m n t IN god lm n l

By Eudid Lemma I Mrtns for some vis EZ
Then IE m214m21 m2 n21 21
igodlm n l i m Zn n a mnZ

By CRT we have

Cor 8.15

1 Lf min EIN godem n L Then 21mn ZmXan
2 If min EIN min 22 godem n I
Then Yim n Yim Yin Yim 12151

Euler Phi function

9cm a Iea em godca m I

Phi function formula D ofapt p plat
d

ofCmn Yumfin
Fen fed t t Ldr n Idi dukn in Fb

Let m n EZ godum n 1

For a be 21 ByCov8.14 for La EZ m b tZn

I c EZun Sit c Ta in Zm c Tb in Zn

Kalmodon bimodal hasuniquesolutionof the fam X Cladmn

prop 8.16

of R is a ring IRI p Cptprime Then REXp

proof Define O Zp R OCK k Ir
i R is an additivegp 1121 p
t ByLagrange them ours I or p






































































































By agrang I
Ip 0 02112 P
i KJ Im E pl k m

Ik ml 112 0

K IR M Ir

Thus O well defined and one to one

Also I is ring HM

i Zp p
1121 O is one to one

i O is onto

Thus Zp ER






































































































9 Commutative Ring
9 1 Integral domain Fields

Unit u ut ERERy
Let R be a ring
ne R be a unit if u has a multiplicative inverse in R wt
wit I it U

Ytisamit in R r s ER ur us r s

Let denote thesetof all units in R
Rt is a gp May group of units of R
2 is a unit in Q but not a unit in 21

division ring 75071 EYelement a Fptp ut
A ring R so is a division rig if RA Ryong
ie every non zero

element of R is a unit in R
A commutative division Ring is a field

ex Q A I are fields Z is not a field

ex I a Ex IT has solution in Z godca n

Thus if u p is a primethengodca pot forall at i a p i
Thus Xp Xp 03 Zp is a field

However if n is not a prime I a b ab n I ca eban
Then the non zerocongruence class Caleb are not units in Zn
Since there is nosol sit a TX Ii Hence Zit 21150
Thus Zn is a field n isprime

If R is a division ring or field then its only ideal are so or R

old L t he






































































































Wedderburn Little Theorem

Finite division ring is a field

Zero divisor

Let R So be a ring For 0 a ER

a is a zero divisor if 7 0 b ER sit ab o

ep If 8 is a zero divisor in MaLR

toMatrixY 10447125225948 Identity matrix Efikzerodivisor

prop 9.1

Given a ring R TEAE
1 tf ab o in R then avo or bed

2 Of ab É in R at o then b c
3 of bag in R ato then be

proof

1 2 Let ab as a 0 alb c o

Yafo b c

D Let ab o in R
case I azo we are done

caber ab o a o bio done

1 E 33 FEE

integral domain

A commutative rig 124903 is integraldomain if it has no zero divison
ie ab 0 ad or boo

b






































































































ex if p is a prime then plab
pla or plb
i e I a Tb To inZp a so or Tb 0

Thus Zp is an integral domain

However n abttea ben a Tb to Ta To Eb To

Thus Zn is an integral domain n is prime

prop 9 a 1
commutative division

pig nuts

Every fidd is an itdomain I ab0 an or be

proof Let ab o in a field R
Wewant to show a o or b o

case 1 If a 0 then we are done

ease z if ato then a'ab b at o b o
Thus R is an integral domain

1 Using the proof of9.2 We can show that every subring of a field
in an integral

domain

2 The converseofprop9.2 is not true

ep 21
is an ID but not a field

ex The Gaussian ring 21 Ii atbi a bet

2173 I l Ii ZED is not a field

prop 9 s

Every fitz integral domain is afield
infinite a Ik field ep 21 Gln pi nxn dat to






































































































proof Let 12 be an ID at R ato
Consider themap O R R defined by Dakar
R is an I D areas at O

i vs O is injective
In particular I bet sit abt
i R is commutative

i ab l ba ie a is a unit
i R is a field

prop9.4
The characteristic of any integral domain is either o or a primep
proof Let Rbe an I P

1 If chaRs o Then we are done

4 Vf chip n e IN

prove by contradiction Suppose u is not a prime n ab

If I is the unity of 12 then byprop8.1 l a b n

a 1 a b 1 ab 4.1 n 1 0

i R is an ID

i a 1 0 or b 1 0 which leads to a contradiction sinceOct n

n is a prime

BorderEpdividesp
For a bek we have at bP att 1 a b t t Elablytbpiii is i
i her p latbfaptb

oyy.iq
deal deal






































































































9.2 Prime ideals Maximal Ideals

def prime ideal

Let R be a commutative ring abba

An ideal P R ofR is a prime ideal

if every riser satisfy It Then reporset

Let p be a prime a be z
Then plab pla or plb
MAJ abepZ aepz bepg prime ideal

ex 03 is a prime ideal of21 abio an bio

ex For n t IN n 22

nz is a prime ideal of Z e n is a prime

prop9.5

if R is commutative
ring vs Sr ER

then an idealp of R is a prime ideal a 12 P is intdomain

proof 12 Eine committing
RIP So a Otp up 7 unity at P

I P
P R R R I P

Also for r s ER we had

P is aprimeidol rst p rep or sep
rep stp otp up otp or stp otp
R p is int domain

at deal






































































































maximal ideal

Let R be a commutative ring
An ideal M R of R is a maximal ideal if whenever A is an ideal

sit GET R then A Me or A R

ex if r4M then the ideal erst M R if M is maximal
ex Zeo in maximum ideal 212 215

prop 9.6

of R is a commutative ring then an ideal M of R is a maximal ideal
RIM is a field

proof FRmisawmmtatie my
RIM Go ot M HM

1 M

M R max prime ideal Mtr
Also for re R note that u M E rtm to M

M is a maximal ideal

ar M R fr any r m

It or M forany r M
foranyv4M I rt ME14M st lr m Lstm HM

RIM is a field

Cor 9.7 CV59.2 9.5 9.6

Every maximal ideal of a commutative
rig is a prime ideal

The converse of cov 9.7 is not the

ep in 21 o is a prime ideal but not a maximal ideal

de deal






































































































ex Consider theideal c x'ti in the ring 21Ex

The map 0 12Ex Eti defined by

Defa fei is surjective since O atbx at bi

Also KerD XD

By1st IM thin 215 7 2 4 E Xii

215 is an ID butnot a field
i theideal cap is a prime but not maximal

nut 1
maximal ideal 14M field commutativedivision ring

maxiprime fieldEYED
prime ideal K at domain ab 0 aso or boo

y






































































































9s fields of Fractions

We recall that every subring of a field is an ID

The converse also hold every integral domain R is isomorphic to a

subring of a field f

Let Rbe an ID D Also
Consider theset X RxD 9 r s reR SED

We say r S ri Si on X us As

In particular is r s r s

2 r s r S Ch S r s

3 Cr s LK S

ri s re so
r S v2 SD

fraction Is
Motivated by the case 12 21 We define the fraction I to bethe
equivalence class Ecr s of the pair r s EX

Let F denote the setof all these fractions ie

F I ve R s ED I iv SER s to

addition multiplication of F

It's
I ss us tr s rr are elements of R






































































































Than9.8
Let R be an ID

Then I a field F consisting of fractions Is with r s eR Sto

By identifying r t for all r ER

proof
Notethat s s o Since R is an ID and thus these operations

are well defined

Thenone canshow

F becomes a field with the zero being 4 unity being t
Negation Is is I

Moreover if I 0 in F then r to Er e f
Then we have I I L Et

In addition we have RE R R 4 r ER IF






































































































10 Polynomial Rings

10.1 Polynomials

Polynomial in X over R

Let R be a ring and n be a variable

REX fix a tart n t amXm MENU 03 a ER Loei em

Such fix is polynomial in x over R

fix 0 a o D dy o o

Addition multiplication on Rex
Let fix Aot a x t Amx E RTX

gu bot bixt bux t Rex with men

Then we write ai so for Mt Ei en
Addition on Rex fix gex Lautbott la tb xt i t lantb.la

Multiplication on Rex fixga Carta xt amXm botbixt bux

artbot Labotaboxt ambux'm

CotCX t n t CmtnXmt Ci IeAkbik

prop10.1

Let 12 be a ring and x be variable
11 RID isTring
n R is a subringof Pix
3 of 2 242 denote thecenter of R then Z Rex Z Ix

proof 3 Let fix EI aix EX Ex gox EobixieRex

fixgas cot axe tomenxmt Ci E aubit
aitz i aibjebjai bij
I f






































































































i fixgas gasfix ZEDEZIRED

To show the other inclusion if fix EgarxitZekexD
then fix b b fix Uber

aib bai often

Ai EZ Z RED EZEX

Z Rix ZED

prop 10.2

Let R be an 11 Then

1 REX is an ID

of fto gto in Rex Then degcfg deg fit degcg
3 The units in Rex are Rt the units in R

proof 2 Suppose fix to get to are polynomials in Rex

fix aot tamam geo bot
i bux am o bn

Then fgixt Lambaxmt t a bo

i R is an ID ambuto fixgix 0

i Rex is an ID

i degifg deg f degg

3 Let nix eRex be a unit with the inverse vid
i un Vex I deg at deg v0 mix O Vex O

deg v70 deg V70

deg u o deg V

Thus a ex ex are units in R Rex Rt






































































































In24Ex 2x 2x 4 2 0

Thusdeg 2x degtax deg ix 2x

Theproduct formula inprop 10.2 only applies when R is an ID

To extend theproduct formula in prop10.2 to o
We define deg103 10

I d f d






































































































10.2 Polynomial over a field

def divides

Let f be a field fix get Fix
fix dividesgas if thereexists qus fix sit gas quefix

asf fix gas
propco3

Let F be afield fix gal hix t fix
is fixilgix gas hix fix I hex
n fix gas fix has fix I iguthu x for nix Vex efix

prop 10.4

Let F be afield fix go t fix bemonicpolynomials

fly ng If fix gas
proof foulgas glf

i gas rex fix fix sixgas for s refix

if sg srf
Byprop 10.2 degf degstdegredeyf degstdegro
i fix sga for some SEF
i bothfog an monic

5 1 fig
for abeat if alb bla a b

Theset ofmonicpolynomials in Fix plays the same role as

the set of positive integers in Z






































































































Division algorithm

Let IT be a field fix gas e fix with fix to
Then there exist unique quit rex t Fix sit

go quefix t run with degreedeg f
this includes the case for v o 11784447dego o

proof Prove qux rex exist

Prove by induction

let medeg n degg

If ne m then gas o fix gas
suppose u im and thisholds for all give Ex withdeygon
Write fix aot a Xt amXm am 0

gtx botbixt bnx

f is a field ant exists

gin gex bnant x
m fix

Cbnx'tbutx't t bo brant x mCammyamyx't ta

ox t cbuy bnam am x it

deg gin By induction Iq as rix ex s t gim qinfix tried
Proveuniqueness
Suppose we have gas qu fix trims with degreedeg f
Then rex r IX q ex qui fix
ofq lx qus 0 Then

deger ri digliq q f deg cq q deff a degf
which leads to a contradiction since deg er ri c degf

Thus q ex quo rex r into

i q lx fix nix Vix






































































































prop10.6

Let It be a field fix gust fix with fix to get to
Then there exists dux e fix which satisfies the following

1 dix is more fat ABFifa 1
dix I fix dix lgex
of ex Ifix ex Igex ex I do

4 dux nix fix vexgex for some Ux VIX t fix

If both dex din satisfy theabove conditions

dex divx dixitdex both monic

i

dy dial by prop10.4
greatest commute divisor of fix andgex
Faf dux gedifix.gr

irreducible

Let F be a field a poly tix to in Fix is irreducible

if deg 121 and whenever has has bits in Fix

degli 0 or dig bro

ex if box e Fix satisfy deg1 0 Then bias is irreducible

ex if dey f 2 or Then f is irred a fid to forany def

ex Let tix fix t fix If lax is irreducible and box fix
Then gudlbixs.fm






































































































propco7

Let Fbe a field fix gutted
if lex e fix is irred and lexi fixgas Then leastfix or bulges

Let fix fuex E fix and let lex t fix be irreducible

ifLexi I fix fuk box fax for some i

Than 10.8 Unique factorization Them

Let F be a field fix e fix with deg fat Then we can write

fix cha banks where c tf and lilts are monic ined

polynomials

Thefactorization is uniqueup to theorderof bi

Using Them co8 we can prove I 0 imed polynomials inTex

Prop 10.9

Let F be a field Then all idealsof Fix are of theform
has hasFix for some hex t fix

ofChex to andhas is monic Then thegenerator is uniquely determined

b deal






































































































Let A o be an ideal of Fix
byprop10.9 A cha for a unique monic poly haseFix
Supposedegh m 1 Consider thequotient ring R Fx A

This R Fs fix A fix e Fix
t I x A fix quhas Vix

By division algorithm R It Tat t tan th ai e f
Consider themap 0 F R givenby Oca a atA

O is not the zero map Kero is an idealof F
i kero 0 0 is a l I ringHM

F EOLF
i byidentifying F withOct R a ta.tt amit ai tf
InR at att am ith botbitt t bath

ai bi forall o even 1

prop to10

Let t be a field and ha e fix withdegh mv1
Then thequotientring R Fix Chase isgiven by

12 1aota.tt tam it ait f hit o o AY
in which an elementofR canbe uniquely represented in aboveform

prop w 11

Let F be a field hate fix with deg he 1 TFAE
D FX Chas is a field

Fix has is an ID

3 him is irred in fix

s 1 uhh I d










ex SinceRex 441 Ed which is a field
The poly x't I is imed in Rex

proof

4 v Afield is an 20

in as if him fixget with fix gin t fix
then fix A hasta fungusTA hasta o A in Tex A

By us either fix A Ota or gin A otA
if fix eA fix then fix gu has for somequitFix
Thushas fixgas gushingex
Tex is an I D fixgas't deg go

PEE if gin EA thendeyf o Thus hits is imed in Fix
B i Note that FIX A is a commutative rig

Thus to show it is a field it suffices to show that every
nonzero element of Tex A has an inverse

Let fix At Ot A in Tex A
that is imed and hastfix godchin fix
by prop cob thereexist nix Vast Fix sit

Fux hast vexfix
i ex A fix A It A since hix t A

fix A has an inverse in Fix IA
Fix has is a field

ex Since x'txt I has no root in 212 it is irred in ZzEx

Thus 212273 2 4 1 at bt a beX tht t 1 03 is a field

of 4 elements
a



Analysis between 21 Fit
Z FIX

elements m fix
size lml deg f
units II

EVOKED IN TEXT 0 F I monic poly

unique m t pi put f cbi la Ce F
factorization p prime hi lilts monic ined

ideals n unique if neN Chex unique if ha is monic

Hen is afield n isprine Fix chas is a field has is med


